
DoD UCR 2008, Change 2

Errata Sheet

Changes to UCR 2008, Change 2, Section 5.7, Near-Real-Time, Text-Based Messaging

Products

NOTE: This Section had no specific errata; it was rewritten in its entirety for UCR 2008,

Change 2. This sheet will be used as a placeholder for future changes made to this section.

SECTION CORRECTION EFFECTIVE DATE

THIS PAGE INTENTIONALLY LEFT BLANK

DoD UCR 2008, Change 2

Table of Contents

i

TABLE OF CONTENTS

SECTION PAGE

5.7 Near-Real-Time, Text-Based Messaging Products..1799

5.7.1 Introduction ...1799

5.7.2 Overview ...1799

5.7.3 XMPP Requirements ..1800

5.7.3.1 Introduction ...1800

5.7.3.2 Scope and Acknowledgement ...1800

5.7.3.3 Architecture ..1801

5.7.3.4 Terminology..1802

5.7.3.5 Functional Summary ...1804

5.7.3.5.1 Client-to-Server Connections.......................1804

5.7.3.5.2 Server-to-Server Connections1804

5.7.3.6 XMPP Addressing ..1805

5.7.3.7 XML Streams ..1806

5.7.3.7.1 TCP Binding ..1806

5.7.3.7.2 Stream Negotiation Overview1809

5.7.3.7.3 Stream Features ..1809

5.7.3.7.4 Stream Restarts ..1811

5.7.3.7.5 Continuation and Completion of Stream

Negotiation ...1811

5.7.3.7.6 Directionality ...1811

5.7.3.7.7 Closing a Stream ..1812

5.7.3.7.8 Stream Attributes ...1813

5.7.3.7.9 Namespaces..1815

5.7.3.7.10 Stream Errors ...1816

5.7.3.8 TLS and STARTTLS Negotiation1816

5.7.3.8.1 STARTTLS Process.....................................1817

5.7.3.8.2 Initiation of STARTTLS Negotiation1817

5.7.3.8.3 STARTTLS Negotiation Fails1817

5.7.3.8.4 TLS Negotiation...1818

5.7.3.8.5 TLS Success ...1818

5.7.3.8.6 TLS Failure ..1818

5.7.3.8.7 Order of TLS and SASL Negotiation1819

5.7.3.8.8 STARTTLS Failure Case1819

5.7.3.9 Authentication and SASL Negotiation1819

5.7.3.9.1 Client-to-Server Streams1819

5.7.3.9.2 Server-to-Server Streams1821

5.7.3.9.3 SASL Failure ...1823

DoD UCR 2008, Change 2

Table of Contents

ii

5.7.3.9.4 SASL Errors ...1824

5.7.3.10 Resource Binding ..1824

5.7.3.10.1 Overview ..1824

5.7.3.10.2 Resource Binding Process............................1824

5.7.3.10.3 Error Cases Associated with Server-

Generated Resource Identifiers1826

5.7.3.11 XML Stanzas ..1826

5.7.3.11.1 Common Attributes1826

5.7.3.11.2 Basic Semantics ...1829

5.7.3.11.3 Stanza Errors ..1831

5.7.3.11.4 Server Rules for Processing XML Stanzas ..1831

5.7.3.12 Roster Management ..1833

5.7.3.12.1 Roster-Related Elements and Attributes1834

5.7.3.12.2 Roster-Related Methods...............................1835

5.7.3.12.3 Retrieving the Roster on Login1837

5.7.3.12.4 Adding a Roster Item1839

5.7.3.12.5 Updating a Roster Item1839

5.7.3.12.6 Deleting a Roster Item1840

5.7.3.13 Presence Subscription Management1841

5.7.3.13.1 Subscription Requests1841

5.7.3.13.2 Cancelling a Subscription1846

5.7.3.13.3 Unsubscribing ..1848

5.7.3.14 Exchanging Presence Information1849

5.7.3.14.1 Initial Presence ...1850

5.7.3.14.2 Presence Probes ...1851

5.7.3.14.3 Subsequent Presence Broadcasts1853

5.7.3.14.4 Unavailable Presence1854

5.7.3.14.5 Presence Syntax ...1855

5.7.3.15 Exchanging Messages ...1856

5.7.3.15.1 One-to-One Chat Sessions1856

5.7.3.15.2 Message Stanza Syntax1857

5.7.3.16 Conformance Requirements in rfc3920bis and

rfc3921bis ...1859

5.7.3.17 XMPP Extensions ...1859

5.7.3.17.1 Elevated/Clarified Requirements1860

5.7.3.18 XML Usage...1862

5.7.3.19 DiffServ Code Point (DSCP) Requirements1862

DoD UCR 2008, Change 2

Table of Contents

iii

LIST OF FIGURES

FIGURE PAGE

5.7.3-1 High-Level XMPP Architecture ...1801

LIST OF TABLES

TABLE PAGE

5.7.3-1 XMPP Addressing Examples ...1806

5.7.3-2 DoD XMPP Protocol Suite ...1859

5.7.3-3 Elevated/Clarified Requirements ...1860

THIS PAGE INTENTIONALLY LEFT BLANK

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1799

5.7 NEAR-REAL-TIME, TEXT-BASED MESSAGING PRODUCTS

5.7.1 Introduction

This section of the UCR defines functional requirements for Extensible Messaging and Presence

Protocol (XMPP) clients and servers. These products fall within the data products category as

shown in UCR, Figure 4.5.1-1, Overview of UC Product Categories within the DoD UC APL.

The principal objective for this section is to address the essential capabilities needed to enable

the following services:

 Exchange of presence

 One-to-one chat

 Multi-user chat

5.7.2 Overview

This section of the UCR addresses essential capabilities and features that enable the near-real-

time exchange of relatively brief text-based messages in support of applications such as

presence, one-to-one chat, and multi-user chat. The term “near-real-time” underscores the point

that XMPP applications and services are generally used to enable the immediate interchange of

information. The term “text-based” refers to the exchange of relatively brief text messages with

particular contacts or services. The terms “messaging” or “instant messaging” are umbrella

terms, which can refer to a wide variety of text-based applications, including, but not limited to

the following:

 Sending messages in the context of a two-party text conversation (i.e., a one-to-one

chat session)

 Sending messages in the context of a multiuser chat (i.e., text-based conferencing,

also known as group chat)

 Sending messages in the context of a notification service (including content

syndication, alerts, notifications, and other similar applications)

 Sending messages in the context of a structured request-response interaction (e.g., one

entity requests information and another entity responds with the result)

 Sending messages to convey that an error occurred in relation to a previously sent

message

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1800

5.7.3 XMPP Requirements

5.7.3.1 Introduction

In accordance with Joint Staff and DoD IT Standards Registry (DISR) mandates, this

specification stipulates the use of the XMPP. The XMPP is an open, XML-based protocol

specifically designed to enable the near-real-time exchange of text-based communication

including applications such as presence, one-to-one chat, and multi-user chat. The XMPP is

proven (i.e., has been widely deployed and rigorously tested), secure (i.e., offers inherent support

for channel encryption and strong authentication), and highly scalable.

5.7.3.2 Scope and Acknowledgement

The principal intent for this section of the UCR is to address required functionality to enable:

 Multivendor interoperability

 Essential Information Assurance requirements

Additionally, a key objective for this section of the UCR is to create a well-defined and

unambiguous set of requirements that vendors can “build to” and which will facilitate

compliance and certification testing.

This section of the UCR defines an XMPP specification that is based upon commercial

standards. This specification assumes that the reader is familiar with the general concepts and

requirements defined in rfc3920bis-17 and rfc3921bis-15 (i.e., the XMPP baseline standards).

For that reason, this specification does not attempt to cover all aspects exhaustively or all

normative requirements addressed in these baseline documents. Concerning rfc3920bis-17 and

rfc3921bis-15, compliant solutions are expected to implement all requirements defined as

“MUST,” “SHALL,” “REQUIRED,” “MUST NOT,” and “SHALL NOT.” It is also expected

that vendors will likewise implement requirements defined as “SHOULD” or “SHOULD NOT”

except where there may exist valid reasons in particular circumstances to ignore a particular

requirement. To better enable multivendor interoperability and to address specific Information

Assurance) requirements, some of the content defined as “SHOULD,” “RECOMMENDED,”

“SHOULD NOT,” “NOT RECOMMENDED,” “MAY,” or “OPTIONAL” in rfc3920bis and

rfc3921bis has been redefined by this specification to reflect requirement levels associated with

the following terminology: “MUST,” “SHALL,” “REQUIRED,” “MUST NOT,” or “SHALL

NOT.” In the event of a discrepancy between the commercial XMPP standards and this section

of the UCR, the explicit requirements defined in this section of the UCR take precedence. A

significant portion of the text of this specification was borrowed or derived from rfc3920bis-17

and rfc3921bis-15. For the sake of traceability, individual requirements are linked to a reference

source by a bracketed section number and associated reference source identifier.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1801

The active revisions of RFC 3920 and RFC 3921 (i.e., rfc3920bis-17 and rfc3921bis-15),

incorporate lessons learned from extensive implementation and deployment experience since

2004. It is anticipated that these documents will be published as replacement RFCs (obviously,

with new numbers) well in advance of the release of the UCR 2008, Change 2 specification.

In addition to the core functionality specified in rfc3920bis and rfc3921bis, this section of the

UCR will also define a minimum XMPP feature set which will incorporate requirements from

XMPP Extension Protocol (XEP) series documents plus a few additional IETF RFCs. For

further detail, see Section 5.7.3.17, XMPP Extensions.

5.7.3.3 Architecture

The XMPP is implemented using a client-server architecture. Commonly, the XMPP network

consists of a number of interconnected servers. Each server operates as the “home” server for

some number of locally connected clients (see Figure 5.7.3-1, High-Level XMPP Architecture).

Figure 5.7.3-1. High-Level XMPP Architecture

DISN

XMPP

Client

XMPP

Clients

XMPP

Server

Regional

MAN

Local Enclave

(B/C/P/S)

XMPP Client-to-Server

XMPP Server-to-Server

Legend

DMZ

XMPP

Client Local Enclave

(B/C/P/S)

Data

Firewall

XMPP Server

(Enterprise-Wide

IM/Presence

Services)

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1802

 An XMPP client must connect to its “home” server in order to be granted access to

the network and to subsequently be permitted to exchange instant messaging (IM) and

presence information with other users/services. After the client successfully

negotiates and establishes a connection with its home server, the client then uses

XMPP to communicate with its server, other clients, and any other entities (e.g., a

multiuser chat service) on the network. More than one client can connect

concurrently to the same home server on behalf of the same local or user account.

[Section 2.5, rfc3920bis-17]

 An XMPP server manages XML streams with locally hosted clients and delivers

XML stanzas to those clients over the negotiated streams. The server also manages

XML streams with peer servers and routes XML stanzas to those servers over the

negotiated streams. A server is responsible for the enforcement of security policies

(e.g., user authentication and channel encryption), storing a user‟s roster, and

maintaining presence information for all of its hosted users. A server may also host

local services that use XMPP communication primitives (e.g., multiuser chat service).

[Section 2.5, rfc3920bis-17]

NOTE: Proprietary client-to-server protocols are permitted within the context of an MILDEP

enclave. However, these proprietary implementations must be able to federate with native

XMPP servers by means of an XMPP server-to-server stream enabled through the use of an

XMPP gateway implementation. Likewise, an XMPP gateway must be able to federate with

other XMPP gateways by means of an XMPP server-to-server stream. The XMPP gateway

implementations are expected to comply with all server-to-server requirements as defined in

UCR Section 5.7.

5.7.3.4 Terminology

 XML Stanza. An XML stanza is a discrete XML fragment that is sent over the

transport provided by the negotiated XML stream. As defined in the XMPP baseline

specification, an XML stanza is “the basic unit of meaning in XMPP.” [Section 4.1,

rfc3920bis-17]

 Initiating Entity and Receiving Entity. When a client initiates a session with its home

server, the client is designated as the “initiating entity” and the server is labeled the

“receiving entity.” Likewise, when a server initiates a session with a peer server, the

server originating the connection is designated as the initiating entity and the targeted

peer server is labeled as the receiving entity. [Section 1.4, rfc3920bis-17]

 XML Stream. An XML stream provides the essential transport needed for all client-

to-server and server-to-server communications. An XML stream acts as a logical

envelope (i.e., container) for all the XML elements and XML stanzas exchanged

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1803

between a client and server or between server peers. As discussed in rfc3921bis-12,

Section 4.3, an XML stream is always unidirectional, which means that XML stanzas

can be sent in only one direction over the stream (either from the initiating entity to

the receiving entity or from the receiving entity to the initiating entity). To enable

communication between an initiating entity (i.e., a client or server) and a receiving

entity (i.e., a server), the initiating entity will negotiate an XML stream to the

receiving entity (the Initial Stream), and, in response, the receiving entity will

negotiate an XML stream to the initiating entity (the Response Stream). [Section 4.1,

rfc3920bis-17]

 Contact. A contact is an entity that has a subscription to a user‟s presence or to which

a user has a presence subscription. In this specification, the term “contact” is also

used in a less strict sense to refer to a potential contact, an item in a user‟s roster, or

the target of a particular message stanza or presence subscription request. [Section 3,

rfc3921bis-15]

 Entity. In the context of this specification, an entity typically refers to a client or

server implementation. However, in XMPP, an entity also could be a reference to a

gateway, a service, or a chat room.

 Originating Entity. The entity (e.g., a client or server) that generates a stanza is

referred to as the originating entity.

 Mandatory-to-Negotiate Stream Features. Mandatory-to-negotiate stream features

refer to a set of particular protocol interactions that are mandatory for the initiating

entity to complete before the receiving entity will accept XML stanzas from the

initiating entity (e.g., authentication and channel encryption). [Section 4.2.1,

rfc3920bis-17]

 Connected Resource. After successfully binding a resource to the XML stream, the

client is referred to as a Connected Resource.

 Available Resource. After a connected resource sends initial presence, it is referred

to as an Available Resource.

 Interested Resource. If a connected resource or available resource requests the roster,

it is referred to as an Interested Resource.

 User. The term “user” commonly refers to the owner of an XMPP account. It is

worth noting that a user may not necessarily be a natural person (e.g., it could be an

automated process).

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1804

 Related Abbreviations

 C = client

 CC = contact‟s client

 CS = contact‟s server

 I = an initiating entity

 R = a receiving entity

 S = server

 UC = user‟s client

 US = user‟s server

5.7.3.5 Functional Summary

5.7.3.5.1 Client-to-Server Connections

As discussed previously, a client needs to connect to a server in order to be granted access to the

network. The process used by a client to open, secure, and close an XML stream is as follows

[Section 1.3, rfc3920bis-17]:

1. Determine the hostname and port at which to connect.

2. Open a Transmission Control Protocol (TCP) connection.

3. Open an XML stream over TCP.

4. Negotiate Transport Layer Security (TLS) for channel encryption.

5. Authenticate using a Simple Authentication and Security Layer (SASL) mechanism.

6. Bind a resource to the stream (see UCR, Section 5.7.3.10, Resource Binding).

7. Exchange an unbounded number of XML stanzas with other entities on the network.

8. Close the XML stream.

9. Close the TCP connection.

5.7.3.5.2 Server-to-Server Connections

For server-to-server communications (also known as “federation”), an XMPP server must

establish an XML stream with a peer server. This type of connection is also commonly

abbreviated as (s2s). The process for establishing and terminating server-to-server connections

is as follows [Section 1.3, rfc3920bis-17]:

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1805

1. Determine the hostname and port at which to connect.

2. Open a TCP connection.

3. Open an XML stream over TCP.

4. Negotiate TLS for channel encryption.

5. Authenticate using a SASL mechanism.

6. Exchange an unbounded number of XML stanzas both directly for the servers and

indirectly on behalf of entities associated with each server (e.g., connected clients).

7. Close the XML stream.

8. Close the TCP connection.

5.7.3.6 XMPP Addressing

All the basic elements (i.e., XMPP clients, servers, and associated services) of the XMPP

architecture are addressable using a globally unique address. Generally, XMPP addresses are

referred to as Jabber IDs or JIDs. Typically, a JID is made up of three parts within the following

structure: [localpart@domainpart/resourcepart].

 Domainpart. The domainpart of a JID is that portion after the “@” character (if any)

and before the “/” character (if any); it is the primary identifier and is the only

required element of a JID (a mere domainpart is a valid JID). Typically, a

domainpart identifies the “home” server to which clients connect for XML routing

and data management functionality. However, it is not necessary for an XMPP

domainpart to identify an entity that provides core XMPP server functionality (e.g., a

domainpart can identify an entity such as a multiuser chat service or a user directory).

[Section 2.2, draft-ietf-xmpp-address-04]

 Localpart. The localpart of a JID is an optional identifier placed before the

domainpart and separated from the latter by the “@” character. Typically, a localpart

uniquely identifies the entity requesting and using network access provided by a

server (i.e., a local account). However, the localpart of a JID can also represent other

kinds of entities (e.g., a chat room associated with a multiuser chat service). The

entity represented by an XMPP localpart is addressed within the context of a specific

domain. [Section 2.3, draft-ietf-xmpp-address-04]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1806

 Resourcepart. The resourcepart of a JID is an optional identifier placed after the

domainpart and separated from the latter by the “/” character. A resourcepart can

modify either a <localpart@domainpart> address or a mere <domainpart> address.

Typically a resourcepart uniquely identifies a specific connection (e.g., a device or

location) or object (e.g., an occupant in a multiuser chat room) belonging to the entity

associated with an XMPP localpart at a local domain. [Section 2.4, draft-ietf-xmpp-

address-04]

An address of the form [localpart@domainpart] is referred to as a bare JID. An address of the

form [localpart@domainpart/resourcepart] is referred to as a full JID. Table 5.7.3-1, XMPP

Addressing Examples, provides a few examples.

Table 5.7.3-1. XMPP Addressing Examples

XMPP

ENTITY FORMAT EXAMPLE

Server Consisting of a single domainpart identifier. “chat.dod.mil”

User Account Consisting of a localpart and domainpart

separated by the “@” character.

“john.smith@chat.dod.mil”

Specific

Client

Connection

Consisting of a localpart, domainpart and

resourcepart, where the localpart is separated

from the domainpart by the “@” character and

the domainpart is separated from the

resourcepart by the “/” character.

“john.smith@chat.dod.mil/XMPP

Desktop Client”

5.7.3.7 XML Streams

As mentioned previously, an XML stream provides the fundamental transport needed for all

client-to-server and server-to-server communications. The ability to establish and maintain an

XML stream is an essential capability of XMPP.

5.7.3.7.1 TCP Binding

[Required] As XMPP is defined in this specification, an initiating entity SHALL open a TCP

connection to the receiving entity before it negotiates XML streams with the receiving entity.

The parties then maintain that TCP connection for as long as the XML streams are in use.

[Section 3.1, rfc3920bis-17]

5.7.3.7.1.1 Hostname Resolution

Because XML streams are sent over TCP, the initiating entity needs to determine the IPv4 or

IPv6 address (and port) of the receiving entity‟s “origin domain” before it can attempt to connect

to the XMPP network. [Section 3.2, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1807

1. [Required] When a server receives a stanza and the JID contained in the “to” attribute

does not match one of the configured hostnames of the server itself, the server SHALL

attempt to route the stanza to the remote domain. If no server-to-server stream exists

between the two domains, the sender‟s server SHALL attempt to resolve the remote

hostname using a DNS service location record service (DNS SRV record) of “xmpp-

server” (for server-to-server connections). [Sections 10.4 of rfc3920bis-17],

2. [Required] To discover the hostname of the XMPP service in a given domain, XMPP

clients SHALL use the same hostname resolution process. However, the DNS service

location record service identified in the DNS SRV query will be “xmpp-client” (for client-

to-server connections).

NOTE: It is not necessary to resolve the DNS domain name before each connection

attempt, because DNS resolution results can be cached temporarily in accordance with

time-to-live values. [Section 13.9.2, rfc3920bis-17]

3. [Required] All server and client implementations SHALL support this hostname

resolution process as follows [Section 3.2.1, rfc3920bis-17]:

a. The initiating entity SHALL construct a DNS SRV query (see RFC 2782) where

inputs are:

(1) A service of “xmpp-server” for server-to-server connections (or alternatively,

“xmpp-client” for client-to-server connections)

(2) A proto of “tcp”

(3) A name corresponding to the “origin domain” of the XMPP service to which

the initiating entity wishes to connect (e.g., “example.disn.mil”)

b. The result is a query such as “_xmpp-server._tcp.example.disn.mil.” (or alternatively,

“_xmpp-client._tcp.exmple.disn.mil.” for client-to-server connections).

c. If a response is received, it will contain one or more combinations of a port and

hostname, each of which is weighted and prioritized as described in RFC 2782.

d. The initiating entity SHALL choose one of the returned hostnames to resolve

(following the rules in RFC 2782), which it SHALL do by using a DNS “A” or

“AAAA” lookup on the hostname; this will result in an IPv4 or IPv6 address.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1808

e. The initiating entity SHALL use the IP address from the first successfully resolved

hostname (with the corresponding port number returned by the SRV lookup) as the

connection address for the receiving entity.

f. If the initiating entity fails to connect using that IP address, but the “A” or “AAAA”

lookup returned more than one IP address, then the initiating entity SHALL use the

next resolved IP address for that hostname as the connection address.

g. If the initiating entity fails to connect using all resolved IP addresses for a given

hostname, then it repeats the process of resolution and connection for the next

hostname returned by the SRV lookup.

h. If the initiating entity fails to connect using any hostname returned by the SRV

lookup, then it either SHALL abort the connection attempt or SHALL use the

fallback process described in the following section.

5.7.3.7.1.2 Standard, Default Port Values

The standard default XMPP port for client-to-server connections is 5222. The standard default

XMPP port for server-to-server connections is 5269.

5.7.3.7.1.3 Fallback Process

[Required] The fallback process SHALL be a normal “A” or “AAAA” address record

resolution to determine the IPv4 or IPv6 address of the origin domain, where the port used is the

“xmpp-client” port of 5222 for client-to-server connections or the “xmpp-server” port 5269 for

server-to-server connections. [Section 3.2.2, rfc3920bis-17]

NOTE: If the initiating entity has been explicitly configured to associate a particular hostname

(and potentially a port value) with the origin domain of the receiving entity, the initiating entity

SHOULD use the configured name instead of performing the DNS SRV resolution process on

the origin name. Naturally, if the initiating entity has knowledge (e.g., through the configuration

process) of the IP address and port of the receiving entity, then there is no reason to perform

hostname resolution. [Section 3.2.3 rfc3920bis-17]

5.7.3.7.1.4 Reconnection

1. [Required] It can happen that an XMPP server goes offline while servicing TCP

connections from local clients and from other servers. Because the number of such

connections can be quite large, the reconnection algorithm employed by entities that seek

to reconnect can have a significant impact on software and network performance. When

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1809

client and server implementations attempt to reconnect because of the server going

“offline,” they SHALL comply with the following guidelines [Section 3.3 rfc3920bis-17]:

a. The number of seconds that expire before an entity first seeks to reconnect SHALL be

an unpredictable number between 0 and 60 (e.g., so that all clients do not attempt to

reconnect exactly 30 seconds after being disconnected).

b. If the first reconnection attempt does not succeed, an entity SHALL back off

increasingly on the time between subsequent reconnection attempts.

5.7.3.7.2 Stream Negotiation Overview

To establish an XML stream, the initiating entity (e.g., client or server) and the receiving entity

(e.g., a server) shall agree on a set of preconditions for connecting as a client or as a peer server.

The entities involved will begin the process of stream negotiation. In this process, the receiving

entity for a stream will impose certain conditions upon the connection. For example, when a

client attempts to establish an XML stream with its home server, it will first open a persistent

TCP connection and then begin the process of stream negotiation. Through an exchange of

XML elements with the client, the server will inform the client regarding what stream features it

supports. The server will specify whether a particular stream feature is required or optional. As

a result, the stream negotiation process permits the server to enforce important preconditions

(e.g., user authentication and channel encryption) upon the connection. Stream negotiation is a

multistage process. [Section 4 of rfc3920bis-17]

5.7.3.7.3 Stream Features

1. [Required] The initiating entity SHALL initiate an XML stream by sending an initial

stream header to the receiving entity.

C: <stream:stream

 from='john@im.example1.dod.mil'

 to='im.example1.dod.mil'

 version='1.0'

 xml:lang='en'

 xmlns='jabber:client'

 xmlns:stream='http://etherx.jabber.org/streams'>

2. [Required] In response, the receiving entity SHALL send a response stream header to the

initiating entity.

S: <stream:stream

 from='im.example1.dod.mil'

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1810

 id='t7AMCin9zjMNwQKDnplntZPIDEI='

 to='john@im.example1.dod.mil'

 version='1.0'

 xml:lang='en'

 xmlns='jabber:client'

 xmlns:stream='http://etherx.jabber.org/streams'

3. [Required] After the receiving entity has sent a response stream header to the initiating

entity, the receiving entity SHALL send a <features/> child element (prefixed by the

streams namespace prefix) to the initiating entity in order to announce any conditions for

continuation of the stream negotiation process. Each condition takes the form of a child

element of the <features/> element, qualified by a namespace that is different from the

streams namespace and the content namespace. The <features/> element can contain one

child, contain multiple children, or be empty. [Section 4.2.2, rfc3920bis-17]

4. [Required] For stream features that are mandatory-to-negotiate, the definition of that

feature SHALL declare that the feature is always mandatory-to-negotiate (e.g., this is true

of resource binding for XMPP clients) or the receiving entity SHALL explicitly flag the

feature as mandatory-to-negotiate (e.g., this is done for TLS by including an empty

<required/> element in the advertisement for the STARTTLS feature). [Section 4.2.2,

rfc3920bis-17]

R: <stream:features>

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>

 <required/>

 </starttls>

 </stream:features>

5. [Required] If the <features/> element contains at least one mandatory feature, then the

initiating entity SHALL continue with the stream negotiation process. An empty

<features/> element indicates that the stream negotiation is complete and that the initiating

entity is cleared to send XML stanzas. [Section 4.2.2, rfc3920bis-17]

R: <stream:features/>

NOTE: A <features/> element that contains only voluntary features indicates that the

stream negotiation is complete and that the initiating entity is cleared to send XML stanzas.

However, the initiating entity MAY negotiate further features if desired. [Section 4.2.2,

rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1811

5.7.3.7.4 Stream Restarts

1. [Required] On successful negotiation of a feature that necessitates a stream restart, both

the initiating entity and the receiving entity SHALL consider the previous stream to be

replaced, but SHALL NOT terminate the underlying TCP connection; instead, the initiating

entity and the receiving entity SHALL reuse the existing connection. [Section 4.2.3,

rfc3920bis-17]

2. [Required] The initiating entity then SHALL send a new initial stream header to the

receiving entity. [Section 4.2.3, rfc3920bis-17]

3. [Required] When the receiving entity receives the new initial stream header, it SHALL

generate a new stream ID (instead of reusing the old stream ID) and SHALL then send a

new response stream header to the initiating entity. [Section 4.2.3, rfc3920bis-17]

5.7.3.7.5 Continuation and Completion of Stream Negotiation

1. [Required] The receiving entity SHALL send an updated list of stream features to the

initiating entity after a stream restart. [Section 4.2.4, rfc3920bis-17]

NOTE: The list of updated features MAY be empty if there are no further features to be

advertised. [Section 4.2.4, rfc3920bis-17]

2. [Required] The receiving entity SHALL indicate completion of the stream negotiation

process by sending to the initiating entity either an empty <features/> element or a

<features/> element that contains only voluntary features. Once stream negotiation is

complete, the initiating entity is cleared to send XML stanzas over the stream for as long as

the stream is maintained by both parties. [Section 4.2.5, rfc3920bis-17]

R: <stream:features/>

NOTE: A <features/> element that contains only voluntary features indicates that the

stream negotiation is complete and that the initiating entity is cleared to send XML stanzas,

but that the initiating entity MAY negotiate further features if desired. [Section 4.2.5,

rfc3920bis-17]

5.7.3.7.6 Directionality

An XML stream is always unidirectional, by which is meant that XML stanzas can be sent in

only one direction over the stream (either from the initiating entity to the receiving entity or from

the receiving entity to the initiating entity). [Section 4.3, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1812

1. [Required] For client-to-server sessions, a server SHALL allow a client to use “two

streams over a single TCP connection.”

2. [Required] For server-to-server sessions, the two server peers SHALL use two streams

over two TCP connections, where one TCP connection is used for the stream in which

stanzas are sent from the initiating entity to the receiving entity and the other TCP

connection is used for the stream in which stanzas are sent from the receiving entity to the

initiating entity. [Section 4.3, rfc3920bis-17]

NOTE: This concept of directionality applies only to stanzas and explicitly does not apply

to other first-level children of the stream root, such as elements used for TLS negotiation,

SASL negotiation. In particular, during establishment of a server-to-server session, while

completing STARTTLS negotiation and SASL negotiation, the two servers would use one

TCP connection, but after the stream negotiation process is done, that original TCP

connection would be used only for the initiating server to send XML stanzas to the

receiving server. In order for the receiving server to send XML stanzas to the initiating

server, the receiving server would need to reverse the roles and negotiate an XML stream

from the receiving server to the initiating server over a separate TCP connection. [Section

4.3, rfc3920bis-17]

5.7.3.7.7 Closing a Stream

5.7.3.7.7.1 Closing a Stream without a Stream Error

1. [Required] Client and server implementations SHALL be capable of closing an XML

stream by sending a closing </stream> tag. [Section 4.4, rfc3920bis-17]

S: </stream:stream>

NOTE: The entity that sends the closing stream tag SHOULD behave as follows [Section

4.4, rfc3920bis-17]:

a. Wait for the other party to close also its stream before terminating the underlying

TCP connection (this gives the other party an opportunity to finish transmitting any

data in the opposite direction before the TCP connection is terminated).

b. Refrain from initiating the sending of further data over that stream but continue to

process data sent by the other entity (and, if necessary, react to such data).

c. Consider both streams to be void if the other party does not send its closing stream

tag within a configurable amount of time.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1813

d. After receiving a reciprocal closing stream tag from the other party or waiting a

configurable amount of time with no response, the entity SHALL terminate the

underlying TCP connection.

2. [Required] After the entity that sent the first closing stream tag receives a reciprocal

closing stream tag from the other party, it SHALL terminate the underlying TCP

connection or connections. [Section 4.4, rfc3920bis-17]

5.7.3.7.8 Stream Attributes

5.7.3.7.8.1 Initial Streams

1. [Required] For client-to-server connections, it is assumed that the client knows the

associated XMPP account name of the form <localpart@domain>. The client SHALL

include the “from” attribute in the initial stream header it sends to the server and SHALL

set the value to the associated XMPP account name of the form <localpart@domain>.

[Section 4.6.1, rfc3920bis-17]

2. [Required] For server-to-server connections, the initiating entity SHALL include the

“from” attribute in the initial stream header it sends to the receiving entity and SHALL set

its value to a hostname serviced by the initiating entity. [Section 4.6.1, rfc3920bis-17]

3. [Required] For both client-to-server and server-to-server connections, the initiating entity

SHALL include the “to” attribute in the initial stream header that it sends to the receiving

entity and SHALL set its value to a hostname that the initiating entity knows or expects the

receiving entity to service. [Section 4.6.2, rfc3920bis-17]

NOTE: For both client-to-server and server-to-server connections, the initiating entity

SHOULD include an “xml:lang” attribute in the initial stream headers that it generates.

[Section 4.6.4, rfc3920bis-17]

4. [Required] For both client-to-server and server-to-server connections, the initiating entity

SHALL include a “version” attribute whose value is “1.0” (or higher) in the initial stream

headers it generates. [Section 4.6.5, rfc3920bis-17]

Example:

C: <stream:stream

 from='john@im.example1.dod.mil'

 to='im.example1.dod.mil'

 version='1.0'

 xml:lang='en'

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1814

 xmlns='jabber:client'

 xmlns:stream='http://etherx.jabber.org/streams'>

5.7.3.7.8.2 Response Streams

1. [Required] For both client-to-server and server-to-server connections, the receiving entity

SHALL include the “from” attribute in the response stream header that it sends to the

initiating entity and SHALL set its value to a hostname serviced by the receiving entity.

[Section 4.6.1, rfc3920bis-17]

2. [Required] For response stream headers in client-to-server communication, if the client

included a “from” attribute in the initial stream header then the server SHALL include a

“to” attribute in the response stream header and SHALL set its value to the bare JID

specified in the “from” attribute of the initial stream header. If the client did not include a

“from” attribute in the initial stream header then the server SHALL NOT include a “to”

attribute in the response stream header. [Section 4.6.2, rfc3920bis-17]

3. [Required] For server-to-server connections, the receiving entity SHALL include the “to”

attribute in the response stream header that it sends to the initiating entity and SHALL set

its value to the hostname specified in the “from” attribute of the initial stream header.

[Section 4.6.2, rfc3920bis-17]

4. [Required] For both client-to-server and server-to-server connections, the receiving entity

SHALL include an “id” attribute in the response stream header that it sends to the initiating

entity. The “id” attribute communicates a unique identifier for the stream, called a

STREAM ID. The stream “id” shall have the property of randomness. [Section 4.6.3,

rfc3920bis-17]

5. [Required] For both client-to-server and server-to-server connections, the receiving entity

SHALL include a “„version”‟ attribute where the value is 1.0 (or higher) in the response

stream headers it sends to the initiating entity. [Section 4.6.5, rfc3920bis-17]

Example:

S: <stream:stream

 from='im.example1.dod.mil'

 id='t7AMCin9zjMNwQKDnplntZPIDEI='

 to='john@im.example1.dod.mil'

 version='1.0'

 xml:lang='en'

 xmlns='jabber:client'

 xmlns:stream='http://etherx.jabber.org/streams'

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1815

5.7.3.7.9 Namespaces

5.7.3.7.9.1 Streams Namespace

[Required] Client and server implementations SHALL qualify the root <stream/> element

(“stream header”) by the namespace “http://etherx.jabber.org/streams” (the “streams

namespace”). If this rule is violated, the entity that receives the offending stream header SHALL

return a stream error to the sending entity, which SHALL be either <invalid-namespace/> or

<bad-format/>. [Section 4.7.1, rfc3920bis-17]

5.7.3.7.9.2 Content Namespace

1. [Required] An entity (client or server) SHALL declare a content namespace for data sent

over the stream. The content namespace SHALL be the same for the initial stream and the

response stream so that both streams are qualified consistently. The content namespace

applies to all first-level child elements sent over the stream unless explicitly qualified by

another namespace. [Section 4.7.2, rfc3920bis-17]

2. [Required] The XMPP defines two content namespaces: “jabber:client” and

“jabber:server.” Client implementations SHALL support the jabber:client content

namespace. Server implementations SHALL support both the jabber:client content

namespace (when the stream is used for communication between a client and a server) and

the jabber:server content namespace (when the stream is used for communication between

two servers). [Section 4.7.5, rfc3920bis-17]

Example:

C: <stream:stream

 from='john@im.example1.dod.mil'

 to='im.example1.dod.mil'

 version='1.0'

 xml:lang='en'

 xmlns='jabber:client'

 xmlns:stream='http://etherx.jabber.org/streams'>

3. [Required] If an entity receives a first-level child element qualified by a content

namespace it does not support, it SHALL return an <invalid-namespace/> stream error.

[Section 4.7.5, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1816

5.7.3.7.10 Stream Errors

1. [Required] The error child SHALL be sent by an entity (client or server) if it perceives

that a stream-level error has occurred. [Section 4.8, rfc3920bis-17]

2. [Required] Stream-level errors are unrecoverable. Therefore, if an error occurs at the

level of the stream, the entity (client or server) that detects the error SHALL send an

<error/> element with an appropriate child element that specifies the error condition and at

the same time send a closing </stream> tag. [Section 4.8.1.1, rfc3920bis-17]

S: <stream:error>

 <xml-not-well-formed

 xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>

 </stream:error>

 </stream:stream>

3. [Required] The entity that generates the stream error then SHALL close the stream as

explained under Section 4.4 of rfc3920bis-17). [Section 4.8.1.1, rfc3920bis-17]

C: </stream:stream>

4. [Required] If the error is triggered by the initial stream header, the receiving entity

SHALL still send the opening <stream> tag, include the <error/> element as a child of the

stream element, and then send the closing </stream> tag (preferably all at the same time).

[Section 4.8.1.2, rfc3920bis-17]

5.7.3.7.10.1 Stream Error Syntax and Defined Stream Error Conditions

For guidance and associated requirements related to stream error syntax and defined stream error

conditions, see Section 4.8, rfc3920bis-17.

5.7.3.8 TLS and STARTTLS Negotiation

[Required] All XML streams (i.e., including both client-to-server and server-to-server

connections) SHALL be secured with the use of the TLS protocol.

NOTE: On extremely low-bandwidth, high-latency connections, the use of TLS is not

recommended.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1817

5.7.3.8.1 STARTTLS Process

1. [Required] This specification mandates the use of the STARTTLS command to initiate

TLS negotiation. All client and server implementations SHALL support and use the

“STARTTLS” extension.

2. [Required] Immediately after the opening of the response stream, the receiving entity

SHALL initiate the process of stream negotiation. [Section 5.4.1, rfc3920bis-17]

3. [Required] In the stream feature announcement provided by the receiving entity during

the initial stage of the stream negotiation process, the receiving entity SHALL advertize

ONLY the STARTTLS feature (qualified by the XML namespace:

“urn:ietf:params:xml:ns:xmpp-tls”) and SHALL also include an empty <required/> child

element. [Section 5.4.1, rfc3920bis-17] See the following example:

R: <stream:features>

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>

 <required/>

 </starttls>

 </stream:features>

5.7.3.8.2 Initiation of STARTTLS Negotiation

1. [Required] In order to begin the STARTTLS negotiation, the initiating entity SHALL

issue the STARTTLS command (i.e., a <starttls/> element qualified by the

'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the receiving entity that it wishes

to begin a STARTTLS negotiation to secure the stream. [Section 5.4.2.1, rfc3920bis-17]

I: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

2. [Required] The receiving entity SHALL reply with a <proceed/> element qualified by the

'urn:ietf:params:xml:ns:xmpp-tls' namespace. [Section 5.4.2.1, rfc3920bis-17]

R: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

5.7.3.8.3 STARTTLS Negotiation Fails

[Required] If there is a failure of STARTTLS negotiations, the receiving entity SHALL return a

<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace and SHALL

close the XML stream. [Section 5.4.2.2, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1818

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

R: </stream:stream>

NOTE: A STARTTLS failure is not triggered by TLS errors such as bad_certificate or

handshake failure, which are generated and handled during the TLS negotiation itself.

NOTE: If the failure case occurs, the initiating entity MAY attempt to reconnect.

5.7.3.8.4 TLS Negotiation

[Required] After the receiving entity has sent and the initiating entity has received the

<proceed/> element, the initiating and receiving entities SHALL proceed to TLS negotiation.

The TLS negotiation and implementation SHALL be in accordance with the requirements

defined in UCR Section 5.4, Information Assurance Requirements. Section 5.4 provides detailed

guidance and requirements regarding the use of TLS with DoD PKI certificates.

5.7.3.8.5 TLS Success

[Required] If the TLS negotiation is successful, then the initiating and receiving entities

SHALL proceed as follows. [Section 5.4.3.3, rfc3920bis-17]

 The initiating entity SHALL send a new initial stream header to the receiving entity

over the encrypted connection. The initiating entity SHALL NOT send a closing

</stream> tag before sending the new initial stream header, since the receiving entity

and initiating entity MUST consider the original stream to be replaced upon success

of the TLS negotiation.

 The receiving entity SHALL respond with a new response stream header over the

encrypted connection. In this new response stream header, the receiving entity

SHALL generate a new stream ID instead of reusing the old stream ID.

 The receiving entity also SHALL send stream features to the initiating entity, which

SHALL NOT include the STARTTLS feature, but which SHALL advertise support

of SASL negotiation as described in UCR Section 5.7.3.9, Authentication and SASL

Negotiation.

5.7.3.8.6 TLS Failure

[Required] If the TLS negotiation results in failure, the receiving entity SHALL terminate the

TCP connection. [Section 5.4.3.2, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1819

5.7.3.8.7 Order of TLS and SASL Negotiation

[Required] Client and server implementations SHALL complete STARTTLS negotiation

before proceeding to SASL protocol negotiation; this order of negotiation is necessary to help

safeguard authentication information sent during SASL negotiation, as well as to make it

possible to base the use of the SASL EXTERNAL mechanism on a certificate provided during

prior TLS negotiation (for entities who authenticate using a DoD PKI certificate). [Section 5.3.4,

rfc3920bis-17]

5.7.3.8.8 STARTTLS Failure Case

[Required] If the STARTTLS negotiation fails, the receiving entity SHALL return a <failure/>

element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace, terminate the XML

stream, and terminate the underlying TCP connection. [Section 5.4.2.2, rfc3920bis-17]

5.7.3.9 Authentication and SASL Negotiation

The XMPP includes a method for adding authentication support to an XML stream by means of

an XMPP-specific profile of the SASL protocol. As described in RFC 4422, SASL is a

framework for providing authentication and data security services in connection-oriented

protocols via replaceable mechanisms. [Section 6 of rfc3920bis-17 and RFC 4422]

1. [Required] All client and server implementations SHALL support SASL negotiations.

[Section 6.2, rfc3920bis-17]

2. [Required] The entities involved in an XML stream SHALL consider SASL as

mandatory-to-negotiate. [Section 6.3.1, rfc3920bis-17]

3. [Required] Anonymous login capability is prohibited. [Instant Messaging STIG, Version

1, Release 2]

NOTE: SASL negotiation follows successful STARTTLS negotiation. The SASL negotiation

occurs over the encrypted stream that has already been negotiated.

5.7.3.9.1 Client-to-Server Streams

1. [Required] During the prior TLS negotiation, the server SHALL authenticate using a DoD

PKI certificate. The client SHALL validate the certificate presented by the server (i.e.,

shall verify that the certificate is unexpired, unrevoked, and anchored to a trusted DoD CA

in accordance with the policies and requirements defined in UCR Section 5.4).

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1820

2. [Required] The client SHALL authenticate using name and password using the SASL

PLAIN mechanism as defined below.

 NOTE: As defined by this specification, the SASL PLAIN mechanism SHALL only be

used when the underlying XML stream is protected using Transport Layer Security (TLS).

 NOTE: Client authentication using name and password is a minimum requirement. Client

authentication using a DoD PKI certificate is preferred. The client in this scenario would

comply with the behavior defined for the “initiating entity” in UCR Section 5.7.3.9.2,

Server-to-Server Streams.

3. [Required] After successful STARTTLS negotiation, the server SHALL offer the SASL

PLAIN mechanism to the client during SASL negotiation. The <mechanisms/> element

SHALL be qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace. The

<mechanisms/> element SHALL contain one <mechanism/> child element including the

appropriate value for the PLAIN mechanism. [Section 6.4.1, rfc3920bis-17]

S: <stream:features>

 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 <mechanism>PLAIN</mechanism>

 <required/>

 </mechanisms>

 </stream:features>

4. [Required] The client SHALL select the PLAIN authentication mechanism by sending an

<auth/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace and which

SHALL include the appropriate value for the PLAIN „mechanism‟ attribute. See the

following example:

C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'

 mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth>

 As discussed in RFC 4616, the PLAIN SASL mechanism consists of a single message, a

string of [UTF-8] encoded [Unicode] characters, from the client to the server. The client

presents a NUL (U+0000) character, followed by the authentication identity (i.e., name),

followed by a NUL (U+0000) character, followed by the clear-text password. For

additional details, see RFC 4616. [Section 2, RFC 4616]

5. [Required] Upon receipt of the message, the server will verify the presented

authentication identity and password by performing a directory lookup to a directory

service linked to the XMPP server for authenticating the user. [Instant Messaging STIG,

Version 1, Release 2]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1821

6. [Required] All users SHALL be linked to a directory service, which is linked to the user‟s

home XMPP server. [Instant Messaging STIG, Version 1, Release 2]

7. [Required] The server SHALL report the success of the handshake by sending a

<success/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace

[Section 6.4.6. rfc3920bis-17]:

 S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

8. [Required] After successful SASL negotiation, the client and server SHALL restart the

stream. Upon receiving the <success/> element, the client SHALL initiate a new stream

over the existing TLS connection by sending a new initial stream header to the server. The

client SHALL NOT send a closing </stream> tag before sending the new initial stream

header, since the server and client MUST consider the original stream to be replaced upon

sending or receiving the <success/> element. [Section 6.4.6. rfc3920bis-17]

9. [Required] Upon receiving the new initial stream header from the client, the server

SHALL respond by sending a new response stream header to the client (for which it

SHALL generate a new stream ID instead of re-using the old stream ID). [Section 6.4.6,

rfc3920bis-17]

10. [Required] The server SHALL also send stream features, containing any further available

features or containing no features (via an empty <features/> element). [Section 6.4.6,

rfc3920bis-17]

S: <stream:features>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>

 </stream:features>

5.7.3.9.2 Server-to-Server Streams

1. [Required] During the prior TLS negotiation, the initiating entity and the receiving entity

SHALL mutually authenticate using DoD PKI certificates.

2. [Required] After the successful mutual authentication of the receiving entity and the

initiating entity during the prior TLS negotiation, the receiving entity SHALL offer the

SASL EXTERNAL mechanism (as defined in Appendix A of RFC 4422) to the initiating

entity during SASL negotiation. [Section 6.3.4, rfc3920bis-17]

3. [Required] The receiving entity SHALL include an empty <required/> element in its

advertisement of the SASL feature.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1822

 NOTE: The SASL EXTERNAL mechanism allows the initiating entity to request that the

receiving entity use the credentials exchanged during the TLS Handshake process (See

RFC 4422, Appendix A and XEP 0178: Best Practices for Use of SASL EXTERNAL with

Certificates).

R: <stream:features>

 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 <mechanism>EXTERNAL</mechanism>

 <required/>

 </mechanisms>

 </stream:features>

4. [Required] In response to the receiving entity offering the SASL EXTERNAL

mechanism, the initiating entity SHALL select the EXTERNAL authentication mechanism

by sending an <auth/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'

namespace and which SHALL include the appropriate value for the EXTERNAL

„mechanism‟ attribute and which also includes an empty response of “=”. [Section 6.4,

rfc3920bis-17 and Section 3, XEP-178]:

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'

 mechanism='EXTERNAL'/>=</auth>

NOTE: For the sake of backwards compatibility, the initiating entity MAY alternatively

include an authorization identity (base64-encoded as described in RFC 3920) as the XML

character data of the <auth/> element, which SHOULD be the same as the „from‟ address

in the stream header it sent to the initiating entity as defined in XEP-0178.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'

mechanism='EXTERNAL'>Y29uZmVyZW5jZS5leGFtcGxlLm9yZwo=</auth>

5. [Required] The receiving entity SHALL report the success of the handshake by sending a

<success/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace [Section

6.4.6, rfc3920bis-17]:

R: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

6. [Required] After successful SASL negotiation, the initiating entity and the receiving

entity SHALL restart the stream. Upon receiving the <success/> element, the initiating

entity SHALL initiate a new stream over the existing TLS connection by sending a new

initial stream header to the receiving entity. The initiating entity SHALL NOT send a

closing </stream> tag before sending the new initial stream header, since the receiving

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1823

entity and initiating entity MUST consider the original stream to be replaced upon sending

or receiving the <success/> element. [Section 6.4.6, rfc3920bis-17]

I: <stream:stream

 from='im.example.dod.mil'

 to='chat.example2.dod.mil'

 version='1.0'

 xmlns='jabber:server'

 xmlns:stream='http://etherx.jabber.org/streams'>

7. [Required] Upon receiving the new initial stream header from the initiating entity, the

receiving entity SHALL respond by sending a new response stream header to the initiating

entity (for which it SHALL generate a new stream ID instead of reusing the old stream ID).

[Section 6.3.2, and Section 6.4.6, rfc3920bis-17]

R: <stream

 from='im.example.dod.mil'

 id='MbbV2FeojySpUIP6J91qaa+TWHM='

 to='chat.example2.dod.mil'

 version='1.0'

 xmlns='jabber:server'

 xmlns='http://etherx.jabber.org/streams'>

8. [Required] The receiving entity SHALL also send stream features, containing any further

available features or containing no features (via an empty <features/> element). [Section

6.4.6, rfc3920bis-17]

5.7.3.9.3 SASL Failure

1. [Required] The receiving entity SHALL report failure of the handshake by sending a

<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace.

[Section 6.4.5, rfc3920bis-17]

2. [Required] The particular cause of failure SHALL be communicated in an appropriate

child element of the <failure/> element as defined under Section 6.4 (SASL Errors) of

rfc3920bis-17. [Section 6.4.5, rfc3920bis-17]

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 <not-authorized/>

 </failure>

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1824

3. [Required] The receiving entity SHALL allow a configurable number of retries (at least

two and no more than three per IM STIG policy).

4. [Required] If the initiating entity exceeds the maximum number of retries, the server

SHALL return a stream error (which SHALL be either <policy-violation/> or <not-

authorized/>). [Section 6.4.5, rfc3920bis-17]

5.7.3.9.4 SASL Errors

For guidance and associated requirements related to SASL errors and defined conditions, see

Section 6.5, rfc3920bis-17.

5.7.3.10 Resource Binding

5.7.3.10.1 Overview

The baseline standard, rfc3920bis-17, defines the concept of binding a resource (e.g., a particular

client implementation) to an XML stream. After a client authenticates with its home server, the

client will bind a specific resource to the stream so that the server can properly address the client.

In this process, the server will associate an XMPP resource with the client‟s bare JID

(<localpart@domain>). As described in UCR Section 5.7.3.6, Server-to-Server Streams, the

resourcepart identifier is used for routing purposes to ensure that XMPP traffic is routed to the

appropriate client connection. The combination of the resourcepart identifier and the client‟s

bare JID constitute the client‟s full JID of the form <localpart@domain/resourcepart>. [Section

7.1, rfc3920bis-17]

After a client has successfully bound a resource to the XML stream, it is referred to as a

Connected Resource. A compliant server implementation SHALL allow a user to maintain

multiple connected resources simultaneously. [Section 7.1, rfc3920bis-17]

5.7.3.10.2 Resource Binding Process

5.7.3.10.2.1 Mandatory-to-Negotiate

1. [Required] All client and server implementations SHALL support resource binding.

[Section 7.2, rfc3920bis-17]

2. [Required] For client-to-server connections, both the client and server SHALL consider

resource binding as mandatory-to-negotiate. [Section 7.3.1, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1825

5.7.3.10.2.2 Advertising Support

[Required] Upon sending a new response stream header to the client after successful SASL

negotiation, the server SHALL include a <bind/> element qualified by the

'urn:ietf:params:xml:ns:xmpp-bind' namespace in the stream features it presents to the client.

[Section 7.4, rfc3920bis-17]

S: <stream:features>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>

 </stream:features>

5.7.3.10.2.1 Server-Generated Resource Identifier

1. [Required] A server implementation SHALL be able to generate an XMPP resourcepart

on behalf of a client. [Section 7.6, rfc3920bis-17]

2. [Required] A resourcepart SHALL at a minimum be unique among the connected

resources for a specific local account in the form of <localpart@domain>. Enforcement of

this policy is the responsibility of the server.

3. [Required] A client SHALL request a server-generated resourcepart by sending an

Info/Query (IQ) stanza of type “set” (see UCR Section 5.7.3.12.2, Roster-Related Methods)

containing an empty <bind/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-bind'

namespace. [Section 7.6.1, rfc3920bis-17]

C: <iq id='tn281v37' type='set'>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>

 </iq>

4. [Required] Once the server has generated an XMPP resourcepart for the client, it SHALL

return an IQ stanza of type "result" to the client, which SHALL include a <jid/> child

element that specifies the full JID for the connected resource as determined by the server.

[Section 7.6.1, rfc3920bis-17]

S: <iq id='tn281v37' type='result'>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

 <jid>

 juliet@im.example.com/4db06f06-1ea4-11dc-aca3-000bcd821bfb

 </jid>

 </bind>

 </iq>

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1826

5.7.3.10.3 Error Cases Associated with Server-Generated Resource Identifiers

For guidance and associated requirements related to Server-Generated Resource Identifiers, see

Section 7.6.2, rfc3920bis-17.

5.7.3.11 XML Stanzas

After a client and a server (or two servers) have completed stream negotiation, either party can

send XML stanzas. For the „jabber:client‟ and „jabber:server‟ content namespaces, three XML

stanza are defined: <message/>, <presence/>, and <iq/>. There are five common attributes

associated with these three stanza types. These common attributes and the basic semantics of

these three stanza types are defined below.

[Required] Client and server implementations SHALL support the syntax and semantics

associated with the message, presence, and IQ stanzas. [See the following UCR sections

5.7.3.11.1 through 5.7.3.11.3]

5.7.3.11.1 Common Attributes

5.7.3.11.1.1 ‘to’ Attribute

The 'to' attribute specifies the JID of the intended recipient of a stanza. [Section 8.1.1,

rfc3920bis-17]

<message to='robert@example1.dod.mil'>

 <body>Hello</body>

</message>

1. [Required] The following rules SHALL be followed regarding the use of the „to‟ attribute

in the context of XML streams qualified by the „jabber:client‟ namespace (i.e., client-to-

server streams) [Section 8.1.1.1, rfc3920bis-17]:

a. A stanza with a specific intended recipient SHALL possess a „to‟ attribute whose

value is an XMPP address.

b. A stanza sent from a client to a server for direct processing by the server on behalf of

the client (e.g., presence sent to the server for broadcasting to other entities) SHALL

NOT possess a „to‟ attribute.

2. [Required] The following rules SHALL be followed regarding the use of the „to‟ attribute

in the context of XML streams qualified by the „jabber:server‟ namespace (i.e., server-to-

server streams) [Section 8.1.1.2, rfc3920bis-17]:

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1827

a. A stanza SHALL possess a „to‟ attribute whose value is an XMPP address; if a server

receives a stanza that does not meet this restriction, it SHALL generate an <improper-

addressing/> stream error.

b. The domain identifier portion of the JID in the „to‟ attribute SHALL match a

hostname serviced by the receiving server; if a server receives a stanza that does not

meet this restriction, it SHALL generate a <host-unknown/> or <host-gone/> stream

error.

5.7.3.11.1.2 ‘from’ Attribute

The „from‟ attribute specifies the JID of the sender. [Section 8.1.2, rfc3920bis-17]

<message from='john@im.example1.dod.mil/office'

 to='robert@example1.dod.mil'>

 <body>Hello</body>

</message>

1. [Required] The following rules SHALL be followed regarding the use of the „from‟

attribute in the context of XML streams qualified by the „jabber:client‟ namespace (i.e.,

client-to-server streams) [Section 8.1.2.1, rfc3920bis-17]:

a. When the server receives an XML stanza from a client, the server SHALL add a

„from‟ attribute to the stanza or override the „from‟ attribute specified by the client,

where the value of the „from‟ attribute is the full JID

(<localpart@domainpart/resource>) determined by the server for the connected

resource that generated the stanza or the bare JID (<localpart@domainpart>) in the

case of subscription-related presence stanzas.

b. When the server generates a stanza from the server itself for delivery to the client, the

stanza SHALL include a „from‟ attribute whose value is the bare JID (i.e., <domain>)

of the server as agreed upon during stream negotiation (e.g., based on the „to‟

attribute of the initial stream header).

c. When the server generates a stanza from the server for delivery to the client on behalf

of the account of the connected client (e.g., in the context of data storage services

provided by the server on behalf of the client), the stanza SHALL either (a) not

include a „from attribute or (b) include a 'from' attribute whose value is the account's

bare JID (<localpart@domainpart>).

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1828

d. A server SHALL NOT send to the client a stanza without a „from‟ attribute if the

stanza was not generated by the server (e.g., if it was generated by another client or

another server).

e. When a client receives a stanza that does not include a „from‟ attribute, it SHALL

assume that the stanza is from the user‟s account on the server.

2. [Required] The following rules SHALL be followed regarding the use of the „from‟

attribute in the context of XML streams qualified by the „jabber:server‟ namespace (i.e.,

server-to-server streams) [Section 8.1.2.2, rfc3920bis-17]:

a. A stanza SHALL possess a „from‟ attribute whose value is an XMPP address; if a

server receives a stanza that does not meet this restriction, it SHALL generate an

<improper-addressing/> stream error.

b. The domain identifier portion of the JID contained in the „from‟ attribute SHALL

match the hostname of the sending server (or any validated domain thereof) as

communicated in the SASL negotiation; if a server receives a stanza that does not

meet this restriction, it SHALL generate an <invalid-from/> stream error.

Enforcement of these rules helps to prevent certain denial of service attacks.

5.7.3.11.1.3 ‘id’ Attribute

As discussed in Section 8.1.3 of rfc3920bis-17, the „id‟ attribute is used by the entity that

generates a stanza (“the originating entity”) to track any response or error stanza that it might

receive in relation to the generated stanza from another entity (such as an intermediate server or

the intended recipient). It is up to the originating entity whether the value of the „id‟ attribute

will be unique only within its current stream or unique globally.

1. [Required] For <iq/> stanzas, the originating entity SHALL include an „id‟ attribute.

[Section 8.1.3, rfc3920bis-17]

 NOTE: For <message/> and <presence/> stanzas, it is recommended for the originating

entity to include an „id‟ attribute. [Section 8.1.3, rfc3920bis-17]

2. [Required] If the generated stanza includes an „id‟ attribute, then it is required for the

associated response or error stanza to also include an „id‟ attribute, where the value of the

„id‟ attribute SHALL match that of the generated stanza. [Section 8.1.3, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1829

5.7.3.11.1.4 ‘type’ Attribute

As discussed in Section 8.1.4 of rfc3920bis-17, the „type‟ attribute specifies the purpose or

context of the message, presence, or IQ stanza. The particular allowable values for the „type‟

attribute vary depending on whether the stanza is a message, presence, or IQ stanza. The defined

values for message and presence stanzas are specific to instant messaging and presence

applications and therefore are defined in subsequent sections of this specification (e.g., 5.7.3.13,

5.7.3.14, 5.7.3.15, 5.7.3.17), whereas the values for IQ stanzas specify the role of an IQ stanza in

a structured request-response exchange and therefore are specified under UCR Section

5.7.3.11.2.3, IQ Semantics. The only „type‟ value common to all three stanzas is “error”; see

UCR Section 5.7.3.11.3, Stanza Errors. [Section 8.1.4, rfc3920bis-17]

5.7.3.11.1.5 ‘xml:lang’ Attribute

NOTE: A stanza SHOULD possess an „xml:lang‟ attribute if the stanza contains XML character

data that is intended to be presented to a human user. The value of the „xml:lang‟ attribute

specifies the default language of any such human-readable XML character data. [Section 8.1.5,

rfc3920bis-17]

 <presence from='robert@example1.dod.mil/office' xml:lang='en'>

 <show>dnd</show>

 <status>Hello</status>

 </presence>

NOTE: If an outbound stanza generated by a client does not possess an „xml:lang‟ attribute, the

client‟s server SHOULD add an „xml:lang‟ attribute whose value is that which is specified for

the stream. [Section 8.1.5, rfc3920bis-17]

1. [Required] If an inbound stanza received by a client or server does not possess an

„xml:lang‟ attribute, an implementation SHALL assume that the default language is that

which is specified for the stream. [Section 8.1.5, rfc3920bis-17]

2. [Required] A server SHALL NOT modify or delete the „xml:lang‟ attribute of stanzas it

receives from other entities. [Section 8.1.5, rfc3920bis-17]

5.7.3.11.2 Basic Semantics

5.7.3.11.2.1 Message Semantics

As discussed in Section 8.2.1 of rfc3920bis-17, the <message/> stanza can be seen as a “push”

mechanism whereby one entity pushes information to another entity. For additional clarification

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1830

and requirements associated with the use of the <message/> stanza in the context of one-to-one

chat sessions and multi-user chat sessions, see UCR Sections 5.7.3.15 and 5.7.3.17 respectively.

5.7.3.11.2.2 Presence Semantics

As discussed in Section 8.2.2 of rfc3920bis-17, the <presence/> stanza can be seen as a

specialized broadcast or “publish-subscribe” mechanism, whereby multiple entities receive

information (in this case, network availability information) about an entity to which they have

subscribed. For additional clarification and requirements associated with the use of the

<presence/> stanza to enable the exchange of presence information, see UCR sections 5.7.3.13,

Presence Subscription Management, and 5.7.3.14, Exchanging Presence Information.

5.7.3.11.2.3 IQ Semantics

As discussed in Section 8.2.3 of rfc3920bis-17, the Info/Query (IQ) stanza provides a request-

response mechanism. The semantics of the IQ stanza enables an entity to make a request of, and

receive a response from, another entity. The data content of the request and response is defined

by the schema or other structural definition associated with the XML namespace that qualifies

the direct child element of the IQ element and the interaction is tracked by the requesting entity

through use of the „id‟ attribute. [Section 8.2.3, rfc3920bis-17]

1. [Required] When a client or server implementation generates or processes an IQ stanza,

the following rules apply [Section 8.2.3, rfc3920bis-17]:

a. An IQ stanza SHALL include the „id‟ attribute.

b. An IQ stanza SHALL include the „type‟ attribute.

c. The value of the „type‟ attribute for IQ stanzas SHALL be one of the following (if the

value is other than one of the following strings, the recipient or an intermediate server

SHALL return a stanza error of <bad-request/>):

(1) get – The stanza requests information (i.e., the stanza inquires about data

which is needed in order to complete further operations, etc)

(2) set – The stanza provides data that is needed for an operation to be completed

(e.g., it sets new values, replaces existing values, etc)

(3) result – The stanza is a response to a successful “get” or “set” request

(4) error – The stanza reports an error that has occurred regarding the processing

or delivery of a previously sent “get” or “set” request

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1831

d. An entity that receives an IQ request of type “get” or “set” SHALL reply with an IQ

response of type “result” or “error”. The response SHALL preserve the 'id' attribute

of the request.

e. An entity that receives a stanza of type “result” or “error” SHALL NOT respond to

the stanza by sending a further IQ response of type “result” or “error”.

f. An IQ stanza of type “get” or “set” SHALL contain exactly one child element, which

specifies the semantics of the particular request.

g. An IQ stanza of type “result” SHALL include zero or one child element.

h. An IQ stanza of type “error” SHALL include an <error/> child.

5.7.3.11.3 Stanza Errors

[Required] Client and server implementations SHALL comply with the mandatory

requirements defined in Section 8.3 of rfc3920bis-17.

5.7.3.11.4 Server Rules for Processing XML Stanzas

5.7.3.11.4.1 Rules for Processing XML Stanzas to Remote Domains

[Required] If the domainpart of the JID contained in the „to‟ attribute does not match one of the

configured hostnames of the server itself, the server SHALL attempt to route the stanza to the

remote domain. [Section 10.4, rfc3920bis-17]

NOTE: These rules apply only to client-to-server streams. As described under UCR Section

5.7.3.11.1.1, Server-to-Server Streams, a server SHALL NOT accept a stanza over a server-to-

server stream if the domainpart of the JID in the „to‟ attribute does not match a hostname

serviced by the receiving server. [Section 10.4, rfc3920bis-17]

5.7.3.11.4.1.1 Server-to-Server Stream Already Exists

[Required] If a server-to-server stream already exists between the two domains, the sender‟s

server SHALL attempt to route the stanza to the authoritative server for the remote domain over

the existing stream. [Section 10.4.1, rfc3920bis-17]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1832

5.7.3.11.4.1.2 No Server-to-Server Stream Currently Exists

[Required] If no server-to-server stream exists between the two domains, the sender‟s server

SHALL proceed as follows [Section 10.4.2, rfc3920bis-17]:

 Resolve the hostname of the remote domain, as described in UCR Section 5.7.3.7.1.1.

 Negotiate a server-to-server stream between the two domains (as defined in Section

5.7.3.8, TLS and STARTTLS Negotiation, and CR Section 5.7.3.9, Authentication

and SASL Negotiation.

 Route the stanza to the authoritative server for the remote domain over the newly-

established stream.

5.7.3.11.4.1.3 Error Handling

1. [Required] If the routing of a stanza to the intended recipient‟s server is unsuccessful, the

sender‟s server SHALL return an error to the sender. If resolution of the remote domain is

unsuccessful, the stanza error SHALL be <remote-server-not-found/>. If the resolution

succeeds, but the XML streams cannot be negotiated, the stanza error SHALL be

<remote-server-timeout/>. [Section 10.4.3, rfc3920bis-17]

2. [Required] If stream negotiation with the intended recipient‟s server is successful but the

remote server cannot deliver the stanza to the recipient, the remote server SHALL return an

appropriate error to the sender by way of the sender‟s server. [Section 10.4.3,

rfc3920bis-17]

5.7.3.11.4. 2 Rules for Processing XML Stanzas to Local Domain

[Required] If the hostname of the domainpart of the JID contained in the „to‟ attribute matches

one of the configured hostnames of the server, the server SHALL first determine if the hostname

is serviced by the server itself or by a specialized local service. If the latter, the server SHALL

route the stanza to that service. If the former, the server SHALL proceed as follows [Section

10.5.3, rfc3920bis-17]:

5.7.3.11.4.2.1 No Such User

[Required] If there is no local account associated with the <localpart@domainpart>, how the

stanza is processed depends on the stanza type. [Section 10.5.3.1, rfc3920bis-17]

 For a message stanza, the server SHALL return a <service-unavailable/> stanza error

to the sender.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1833

 For a presence stanza, the server SHALL ignore the stanza.

 For an IQ stanza, the server SHALL return a <service-unavailable/> stanza error to

the sender.

5.7.3.11.4.2.2 Bare JID

[Required] If the JID contained in the „to‟ attribute is of the form <localpart@domainpart>,

how the stanza is processed depends on the stanza type. [Section 10.5.3.2, rfc3920bis-17]

 For a message stanza, if at least one connected resource for the account exists, the

server SHALL deliver it to at least one of the connected resources. If there exists no

connected resource, the server SHALL either return a <service-unavailable/> stanza

error or store the message offline for delivery when the account next has a connected

resource.

 For a presence stanza, if at least one connected resource that has sent initial presence

exists (i.e., has a “presence session”), the server SHALL deliver it to such resources.

If no connected resource exists, the server SHALL ignore the stanza.

 For an IQ stanza, the server SHALL handle it directly on behalf of the intended

recipient.

5.7.3.11.4.2.3 Full JID

1. [Required] If the JID contained in the „to‟ attribute is of the form

<localpart@domainpart/resource> and there is no connected resource that exactly matches

the full JID, the stanza SHALL be processed as if the JID were of the form

<localpart@domainpart>. [Section 10.5.3.3, rfc3920bis-17]

2. [Required] If the JID contained in the „to‟ attribute is of the form

<localpart@domainpart/resource> and there is a connected resource that exactly matches

the full JID, the server SHALL deliver the stanza to that connected resource. [Section

10.5.3.3, rfc3920bis-17]

5.7.3.12 Roster Management

In XMPP, a user‟s contact list is referred to as a roster. As defined in rfc3921bis-15, a user‟s

roster is stored by the user‟s server on the user‟s behalf so that the user can access roster

information from any device. This section addresses the protocol mechanics that permit a client

to retrieve a roster from its home server and to add, delete, and modify items within the roster.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1834

5.7.3.12.1 Roster-Related Elements and Attributes

1. [Required] Client and server implementations SHALL use IQ stanzas containing a

<query/> child element qualified by the „jabber:iq:roster‟ namespace to manage elements

in a roster. [Section 2.1, rfc3921bis-15]

 NOTE: As discussed in Section 2.1.1 of rfc3921bis-15, the „ver‟ attribute is a string that

identifies a particular version of the roster information. The „ver‟ attribute is only

generated by the server. An implementation treats the „ver‟ attribute of the <query/>

element qualified by the „jabber:iq:roster‟ namespace as an identifier of the particular

version of roster information being sent or received. Inclusion of the „ver‟ attribute is

recommended. [Section 2.1.1, rfc3921bis-15]

2. [Required] Client and server implementations SHALL support the „subscription‟ attribute

and the allowable subscription-related values for this attribute. The state of the presence

subscription in relation to a roster item is captured in the „subscription‟ attribute of the

<item/> element. The allowable subscription-related values for this attribute are [Section

2.1.2.5, rfc3921bis-15]:

a. “none” – the user does not have a subscription to the contact‟s presence, and the

contact does not have a subscription to the user‟s presence; this is the default value,

so if the subscription attribute is not included, then the state is to be understood as

“none”

b. “to” – the user has a subscription to the contact‟s presence, but the contact does not

have a subscription to the user‟s presence

c. “from – the contact has a subscription to the user‟s presence, but the user does not

have a subscription to the contact‟s presence

d. “both” – both the user and the contact have subscriptions to each other‟s presence

(also called a “mutual subscription”)

3. [Required] In a roster result, the client SHALL ignore values of the „subscription‟

attribute other than “none”, “to”, “from”, or “both”. [Section 2.1.2.5, rfc3921bis-15]

4. [Required] In a roster push, the client SHALL ignore values of the „subscription‟ attribute

other than “none”, “to”, “from”, “both”, or “remove”. [Section 2.1.2.5, rfc3921bis-15]

5. [Required] In a roster set, the value of the „subscription‟ can have a value of “remove”,

which indicates that the item is to be removed from the roster; the server SHALL ignore all

values of the „subscription‟ attribute other than “remove”. [Section 2.1.2.5, rfc3921bis-15]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1835

6. [Required] Client implementations SHALL support the „name‟ attribute, which is used to

specify the “handle” to be associated with the JID, as determined by the user (not the

contact). It is optional for a client to include the „name‟ attribute when adding or updating

a roster item. [Section 2.1.2.4, rfc3921bis-15]

7. [Required] Client and server implementations SHALL support the „ask‟ attribute, which

is used to specify presence subscriptions sub-state. [Section 2.1.2.2, rfc3921bis-15]

8. [Required] A value of “subscribe” in the „ask‟ attribute is used to signal a “Pending Out”

sub-state as described under Section 3.1.2 of rfc3921bis-15. A server SHALL include the

„ask‟ attribute to inform the client of “Pending Out” sub-state. [Section 2.1.2.2,

rfc3921bis-15]

9. [Required] Client and server implementations SHALL support the the <group/> child

element which is used to specify a category or “bucket” into which the roster item is to be

grouped by a client. It is optional for a client to include the <group/> element when adding

or updating a roster item. If a roster set (Roster Set) includes no <group/> element, then the

item is to be interpreted as being affiliated with no group. [Section 2.1.2.6, rfc3921bis-15]

 NOTE: An <item/> element MAY contain more than one <group/> element, which means

that roster groups are not exclusive. [Section 2.1.2.6, rfc3921bis-15]

5.7.3.12.2 Roster-Related Methods

1. [Required] A client implementation SHALL have the ability to generate a Roster Get. A

Roster Get is a client's request for the server to return the roster; syntactically it is an IQ

stanza of type “get” sent from client to server and containing a <query/> element qualified

by the „jabber:iq:roster‟ namespace, where the <query/> element SHALL NOT contain any

<item/> child elements. Likewise, a compliant server implementation SHALL be able to

process this request. The expected outcome of sending a roster get is for the server to

return a roster result. [Section 2.1.3, rfc3921bis-15]

C: <iq from='john.smith@chat.dod.mil/desktop client'

 id='bv1bs71f'

 type='get'>

 <query xmlns='jabber:iq:roster'/>

 </iq>

2. [Required] A server implementation SHALL be able to process a Roster Get.

3. [Required] A server implementation SHALL have the ability to generate a Roster Result.

A Roster Result is the server's response to a roster get; syntactically it is an IQ stanza of

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1836

type “result” sent from server to client and containing a <query/> element qualified by the

„jabber:iq:roster‟ namespace. The <query/> element in a roster result contains one <item/>

element for each contact and therefore can contain more than one <item/> element. The

ability to generate this response is required for server implementations. Likewise, a

compliant client implementation SHALL be able to process this response. [Section 2.1.4,

rfc3921bis-15]

S: <iq id='bv1bs71f'

 to='robert.jones@chat.dod.mil/desktop client‟

 type='result'>

 <query xmlns='jabber:iq:roster' ver='ver7'>

 <item jid='mike@example2.dod.mil'/>

 <item jid='bob@example1.dod.mil'/>

 </query>

 </iq>

4. [Required] A client implementation SHALL be able to process a Roster Result.

5. [Required] A client implementation SHALL have the ability to generate a Roster Set. A

Roster Set is a client's request for the server to modify (i.e., create, update, or delete) a

roster item; syntactically it is an IQ stanza of type “set” sent from client to server and

containing a <query/> element qualified by the „jabber:iq:roster‟ namespace. [Section

2.1.5, rfc3921bis-15]

 The following rules apply to roster sets:

a. The <query/> element SHALL contain one and only one <item/> element.

b. The server SHALL ignore any value of the „subscription‟ attribute other than

“remove”.

 C: <iq from='robert@example2.dod.mil'

 id='rs1'

 type='set'>

 <query xmlns='jabber:iq:roster'>

 <item jid='bob@chat.dod.mil'/>

 </query>

 </iq>

6. [Required] A server implementation SHALL be able to process a Roster Set.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1837

7. [Required] A server implementation SHALL have the ability to generate a Roster Push.

A Roster Push is a newly created, updated, or deleted roster item that is sent from the

server to the client; syntactically it is an IQ stanza of type “set” sent from server to client

and containing a <query/> element qualified by the „jabber:iq:roster‟ namespace. [Section

2.1.6, rfc3921bis-15]

 The following rules apply to roster pushes:

a. The <query/> element in a roster push SHALL contain one and only one <item/>

element.

b. A receiving client SHALL ignore the stanza unless it has no „from‟ attribute (i.e.,

implicitly from the user‟s bare JID) or it has a „from‟ attribute whose value matches

the user's bare JID <user@domain>.

 S: <iq id='a78b4q6ha463'

 to='john@example1.dod.mil/desktop client'

 type='set'>

 <query xmlns='jabber:iq:roster'>

 <item jid='robert@example2.dod.mil'/>

 </query>

 </iq>

9. [Required] A client implementation SHALL be able to process a Roster Push.

10. [Required] As mandated by the semantics of the IQ stanza as defined in [rfc3920bis-17]

each resource that receives a roster push SHALL reply with an IQ stanza of type „result‟

(or „error‟).

C: <iq from='john@example1.dod.mil/desktop client'

 id='a78b4q6ha463'

 type='result'/>

5.7.3.12.3 Retrieving the Roster on Login

1. [Required] Upon authenticating with a server and binding a resource (thus becoming a

connected resource), a client SHALL request the roster before sending initial presence. A

client requests the roster by sending a roster get over its stream to the server. [Section 2.2,

rfc3921bis-15]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1838

 NOTE: Because receiving the roster is not necessarily desirable for all resources, e.g., a

connection with limited bandwidth, the client‟s request for the roster in bandwidth-limited

environments is not mandatory. [Section 2.2, rfc3921bis-15]

 NOTE: If a connected resource or available resource requests the roster, it is referred to as

an interested resource. [Section 2.2, rfc3921bis-15]

2. [Required] The server SHALL process the roster get and SHALL return a roster result

containing a <query/> element qualified by the „jabber:iq:roster‟ namespace. The <query/>

element in a roster result SHALL contain one <item/> element for each contact and

therefore can contain more than one <item/> element. [Section 2.1.3 and Section 2.2,

rfc3921bis-15]

C: <iq from='john@example1.dod.mil'

 id='hu2bac18'

 type='get'>

 <query xmlns='jabber:iq:roster'/>

 </iq>

S: <iq id='hu2bac18'

 to='john@example1.dod.mil/desktop client'

 type='result'>

 <query xmlns='jabber:iq:roster' ver='ver11'>

 <item jid='robert@example2.dod.mil'

 name='Robert'

 subscription='both'>

 <group>Friends</group>

 </item>

 <item jid='mike@example2.dod.mil'

 name='Mike'

 subscription='from'/>

 <item jid='bob@example1.dod.mil'

 name='Bob'

 subscription='both'/>

 </query>

 </iq>

3. [Required] If the server cannot process the roster get, it SHALL return an appropriate

stanza error as described in rfc3920bis-17.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1839

5.7.3.12.4 Adding a Roster Item

1. [Required] A client SHALL support the ability to add an item to the roster by sending a

roster set containing a new item. [Section 2.3.1, rfc3921bis-15]

C: <iq from='john@example1.dod.mil/desktop client'

 id='ph1xaz53'

 type='set'>

 <query xmlns='jabber:iq:roster'>

 <item jid='robert@example2.dod.mil'

 name='Robert'>

 <group>Friends</group>

 </item>

 </query>

 </iq>

2. [Required] If the server can successfully process the roster set for the new item (i.e., if no

error occurs), it SHALL create the roster item in persistent storage. The server SHALL

then return an IQ stanza of type “result” to the connected resource that sent the roster set.

[Section 2.3.2, rfc3921bis-15]

3. [Required] The server SHALL also send a roster push containing the new roster item to

all of the user's interested resources, including the resource that generated the roster set.

[Section 2.3.2, rfc3921bis-15]

4. [Required] If the server cannot successfully process the roster set, it SHALL return a

stanza error. For additional details, see Section 2.3.3 of rfc3921bis-15.

5.7.3.12.5 Updating a Roster Item

1. [Required] A client SHALL support the ability to update a roster item by sending a roster

set to the server. Because a roster item is atomic, the item SHALL be updated exactly as

provided in the roster set. [Section 2.4.1, rfc3921bis-15]

 NOTE: There are several reasons why a client might update a roster item [Section 2.4.1,

rfc3921bis-15]:

a. Adding a group

b. Deleting a group

c. Changing the handle

d. Deleting the handle

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1840

2. [Required] As with adding a roster item, if the roster item can be successfully processed,

then the server SHALL update the roster information in persistent storage, send a roster

push to the entire user‟s interested resources, and send an IQ result to the initiating

resource. [Section 2.4.2, rfc3921bis-15]

5.7.3.12.6 Deleting a Roster Item

1. [Required] A client SHALL support the ability to delete a roster item by sending a roster

set and specifying the value of the „subscription‟ attribute to “remove”. [Section 2.5.1,

rfc3921bis-15]

C: <iq from='john@example1.dod.mil/desktop client'

 id='hm4hs97y'

 type='set'>

 <query xmlns='jabber:iq:roster'>

 <item jid='robert@example2.dod.mil'

 subscription='remove'/>

 </query>

 </iq>

2. [Required] As with adding a roster item, if the server can successfully process the roster

set then it SHALL update the roster information in persistent storage, send a roster push to

all of the user‟s interested resources (with the „subscription‟ attribute set to a value of

„remove‟), and send an IQ result to the initiating resource. [Section 2.5.2, rfc3921bis-15]

3. [Required] The user‟s server SHALL generate one or more subscription-related presence

stanzas, as per the following use cases [Section 2.5.2, rfc3921bis-15]:

a. If the user has a presence subscription to the contact, then the user‟s server SHALL

send a presence stanza of type “unsubscribe” to the contact (to unsubscribe from the

contact's presence).

b. If the contact has a presence subscription to the user, then the user‟s server SHALL

send a presence stanza of type “unsubscribed” to the contact (to cancel the contact's

subscription to the user), or both.

c. If the presence subscription is mutual, then the user‟s server SHALL send both a

presence stanza of type “unsubscribe” and a presence stanza of type “unsubscribed”

to the contact.

S: <presence from='john@example1.dod.mil'

 id='lm3ba81g'

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1841

 to='robert@example2.dod.mil'

 type='unsubscribe'/>

4. [Required] If the value of the „jid‟ attribute specifies an item that is not in the roster, then

the server SHALL return an <item-not-found/> stanza error. [Section 2.5.3, rfc3921bis-15]

5.7.3.13 Presence Subscription Management

As discussed in RFC 2778, presence technology allows a user to subscribe to another user‟s

availability status and to be notified when that state changes. Before a particular user is

permitted to receive information/updates regarding another user‟s presence, that exchange

SHALL first be authorized using a basic subscription request and approval process. When an

entity receives a presence subscription request, the entity can either accept or deny the request.

An entity that has a subscription to a user's presence or to which a user has a presence

subscription is called a “contact”. In XMPP, a subscription lasts across presence sessions;

indeed, it lasts until the contact unsubscribes or the user cancels the previously-granted

subscription. In XMPP, presence subscription management is accomplished through the use of

presence stanzas with specially defined attributes (“subscribe”, “unsubscribe”, “subscribed”, and

“unsubscribed”).

5.7.3.13.1 Subscription Requests

A Subscription Request is a request from a user for authorization to permanently subscribe to a

contact‟s presence information; syntactically it is a presence stanza whose „type‟ attribute has a

value of “subscribe”.

5.7.3.13.1.1 Rules for Client Generation of Outbound Subscription Requests

1. [Required] A client implementation SHALL be capable of generating a subscription

request by sending a presence stanza of type “subscribe”. [Section 3.1.1, rfc3921bis-15]

UC: <presence id='xk3h1v69'

 to='john@example1.dod.mil'

 type='subscribe'/>

2. [Required] When the client sends a presence subscription request to a potential instant

messaging and presence contact, the value of the „to‟ attribute SHALL be a bare JID

<contact@domain> rather a full JID <contact@domain/resource>. [Section 3.1.1,

rfc3921bis-15]

 NOTE: For tracking purposes, a client SHOULD include an „id‟ attribute in a presence

subscription request.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1842

5.7.3.13.1.2 Rules for Server Processing of Outbound Subscription Requests

1. [Required] Upon receiving the outbound presence subscription request, the user‟s server

SHALL comply with the following rules for Server Processing of Outbound Subscription

Requests as defined below [Section 3.1.2, rfc3921bis-15]:

a. Before processing the request, the user‟s server SHALL check the syntax of the JID

contained in the „to‟ attribute. If the JID is of the form

<localpart@domain/resourcepart> instead of <localpart@domain>, the user‟s server

SHALL treat it as if the request had been directed to the contact‟s bare JID and

modify the „to‟ address accordingly.

b. If the potential contact is hosted on the same server as the user, then the server

SHALL adhere to the Rules for Server Processing of Inbound Subscription Requests

(see below) and SHALL deliver it to the local contact.

c. If the potential contact is hosted on a remote server, the user‟s server SHALL then

route the stanza to that remote domain in accordance with the Server Rules for

Processing XML Stanzas (e.g., see Section 5.7.3.11.4.1, Rules for Processing XML

Stanzas to Remote Domains).

2. [Required] When a server processes or generates an outbound presence stanza of type

“subscribe”, “subscribed”, “unsubscribe”, or “unsubscribed”, the server SHALL stamp the

outgoing presence stanza with the bare JID <localpart@domain> of the sending entity.

Enforcement of this rule simplifies the presence subscription model and helps to prevent

presence leaks. [Section 3.1.2, rfc3921bis-15]

3. [Required] If the presence subscription request cannot be locally delivered or remotely

routed (e.g., because the request is malformed, the local contact does not exist, the remote

server does not exist, an attempt to contact the remote server times out, or any other error

determined or experienced by the user‟s server), then the user‟s server SHALL return an

appropriate error stanza to the user. [Section 3.1.2, rfc3921bis-15]

4. [Required] After locally delivering or remotely routing the presence subscription request,

the user‟s server SHALL then send a roster push to all of the user‟s interested resources,

containing the potential contact with a subscription state of “none” and with notation that

the subscription is pending (via an „ask‟ attribute whose value is “subscribe”). [Section

3.1.2, rfc3921bis-15]:

US: <iq id='b89c5r7ib574'

 to='john.smith@chat.dod.mil/desktop client'

 type='set'>

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1843

 <query xmlns='jabber:iq:roster'>

 <item ask='subscribe'

 jid=„robert.jones@example2.dod.mil/desktop client‟

 subscription='none'/>

 </query>

 </iq>

 NOTE: If a remote contact does not approve or deny the subscription request within a

configurable amount of time, the user‟s server SHOULD resend the subscription request to

the contact based on an implementation-specific algorithm (e.g., whenever a new resource

becomes available for the user, or after a certain amount of time has elapsed); this helps to

recover from transient, silent errors that might have occurred when the original

subscription request was routed to the remote domain. When doing so, it is recommended

for the server to include an „id‟ attribute so that it can track responses to the resent

subscription request. [Section 3.1.2, rfc3921bis-15]

5.7.3.13.1.3 Rules for Server Processing of Inbound Subscription Requests

1. [Required] Before processing the inbound presence subscription request, the contact‟s

server SHALL check the syntax of the JID contained in the „to‟ attribute. If the JID is of

the form <contact@domain/resource> instead of <contact@domain>, the contact‟s server

SHALL treat it as if the request had been directed to the contact‟s bare JID and modify the

„to‟ address accordingly. [Section 3.1.3, rfc3921bis-15]

2. [Required] When processing the inbound presence subscription request, the user‟s server

SHALL comply with the following rules for Server Processing of Inbound Subscription

Requests as defined below [Section 3.1.3, rfc3921bis-15]:

a. Above all, the contact‟s server SHALL NOT automatically approve subscription

requests on the contact‟s behalf (unless the contact has configured its account to

automatically approve subscription requests). Instead, the contact‟s server SHALL

deliver that request to the contact‟s available resource(s) for approval or denial by the

contact.

b. If the contact exists and the user already has a subscription to the contact‟s presence,

then the contact‟s server SHALL auto-reply on behalf of the contact by sending a

presence stanza of type “subscribed” from the contact‟s bare JID to the user‟s bare

JID.

c. If the contact does not exist, then the contact‟s server SHALL automatically return a

presence stanza of type “unsubscribed” to the user.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1844

d. Otherwise, if there is at least one available resource associated with the contact when

the subscription request is received by the contact‟s server, then the contact‟s server

SHALL broadcast that subscription request to all of the contact‟s available resources.

e. Otherwise, if the contact exists, the user does not already have a subscription to the

contact‟s presence, and the contact has no available resources when the subscription

request is received by the contact‟s server, then the contact‟s server SHALL keep a

record of the complete presence stanza comprising the subscription request, including

any extended content contained therein, and deliver the request when the contact next

has an available resource. The contact‟s server SHALL continue to deliver the

subscription request whenever the contact creates an available resource, until the

contact either approves or denies the request.

5.7.3.13.1.4 Rules for Client Processing of Inbound Subscription Requests

1. [Required] When the contact‟s client receives a subscription request from the user, it

SHALL present the request to the contact for approval (unless the contact has explicitly

configured the client to automatically approve or deny some or all subscription requests).

[Section 3.1.4, rfc3921bis-15]

2. [Required] A client implementation SHALL be capable of generating a subscription

approval by sending a presence stanza of type “subscribed”.

CC: <presence id='h4v1c4kj'

 to='robert@example2.dod.mil'

 type='subscribed'/>

3. [Required] A client implementation SHALL be capable of denying a subscription request

by sending a presence stanza of type “unsubscribed”. [Section 3.1.4, rfc3921bis-15]

CC: <presence id='h4v1c4kj'

 to='robert@example2.dod.mil'

 type='unsubscribed'/>

 NOTE: If the subscription request is approved by the contact, the contact‟s client

SHOULD send a subscription request to the user automatically. This assumes that the

desired end state is a mutual subscription. [Section 3.1.5, rfc3921bis-15]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1845

5.7.3.13.1.5 Rules for Server Processing of Outbound Subscription Approval

1. [Required] When the contact‟s client sends the subscription approval, the contact‟s server

SHALL stamp the outbound stanza with the bare JID <localpart@domain> of the contact

and locally deliver or remotely route the stanza to the user. [Section 3.1.5, rfc3921bis-15]

CS: <presence from='john@example1.dod.mil'

 id='h4v1c4kj'

 to='robert@example2.dod.mil'

 type='subscribed'/>

2. [Required] The contact‟s server then SHALL send an updated roster push to all of the

contact‟s interested resources, with the „subscription‟ attribute set to a value of “from”.

[Section 3.1.5, rfc3921bis-15]

3. [Required] The contact‟s server SHALL then also send current presence to the user from

each of the contact‟s available resources. [Section 3.1.5, rfc3921bis-15]

 NOTE: In order to subscribe to the user‟s presence, the contact‟s client should then send a

subscription request to the user. It is assumed that the normal, desired end state is a mutual

subscription.

5.7.3.13.1.6 Rules for Server Processing of Inbound Subscription Approval

1. [Required] When the user‟s server receives the subscription approval, it SHALL first

check if the contact is in the user‟s roster with subscription=„none‟ or subscription=„from‟

and the „ask‟ flag set to “subscribe” (see Appendix A of rfc3921bis-15). If this check is

successful, then the user‟s server SHALL proceed as follows [Section 3.1.6, rfc3921bis-

15]:

a. Deliver the inbound subscription approval to all of the user‟s interested resources.

This SHALL occur before sending the roster push described in the next step.

[Section 3.1.6, rfc3921bis-15]

 US: <presence from='john@example1.dod.mil'

 id='h4v1c4kj'

 to='robert@example2.dod.mil'

 type='subscribed'/>

b. Initiate a roster push to all of the user‟s interested resources, containing an updated

roster item for the contact with the „subscription‟ attribute set to a value of “to” (if the

subscription state was “None + Pending Out” or “None + Pending Out+In”) or “both”

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1846

(if the subscription state was “From + Pending Out”). See Table 5 of Appendix A of

rfc3921bis-15. [Section 3.1.6, rfc3921bis-15]

 US: <iq id='b89c5r7ib576'

 to='robert@example2.dod.mil/desktop client'

 type='set'>

 <query xmlns='jabber:iq:roster'>

 <item jid='john@example1.dod.mil'

 subscription='to'/>

 </query>

 </iq>

c. The user‟s server SHALL also deliver the available presence stanza received from

each of the contact‟s available resources to each of the user‟s available resources.

2. [Required] Otherwise – that is, if the user does not exist, if the contact is not in the user‟s

roster, or if the contact is in the user‟s roster with a subscription state other than those

described in the foregoing check – then the user‟s server SHALL silently ignore the

subscription approval stanza by not delivering it to the user, not modifying the user‟s

roster, and not generating a roster push to the user‟s interested resources. [Section 3.1.6,

rfc3921bis-15]

 NOTE: If the account has no available resources when the inbound subscribed notification

is received, a server MAY keep a record of the notification (ideally the complete presence

stanza) and then deliver the notification when the account next has an available resource.

This behavior provides more complete signaling to the user regarding the reasons for the

roster change that occurred while the user was offline. [Section 3.1.6, rfc3921bis-15]

5.7.3.13.2 Cancelling a Subscription

5.7.3.13.2.1 Rules for Client Generation of Subscription Cancellation

[Required] A client implementation SHALL be capable of sending a presence stanza of type

“unsubscribed” in order to cancel a subscription that it has previously granted to a user. [Section

3.2.1, rfc3921bis-15]

CC: <presence id='ij5b1v7g'

 to='robert@example2.dod.mil'

 type='unsubscribed'/>

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1847

5.7.3.13.2.2 Rules for Server Processing of Outbound Subscription Cancellation

[Required] Upon receiving the outbound subscription cancellation, the contact‟s server SHALL

proceed as follows [Section 3.2.2, rfc3921bis-15]:

1. If the user is hosted on the same server as the contact, then the server SHALL adhere to the

rules specified in the next section in processing the subscription cancellation.

2. If the user is hosted on a remote server, the contact‟s server SHALL then route the stanza

to that remote domain.

3. As mentioned, before locally delivering or remotely routing the stanza, the contact‟s server

SHALL stamp the outbound subscription cancellation with the bare JID

<localpart@domain> of the contact.

CS: <presence from='john@example1.dod.mil'

 id='ij5b1v7g'

 to='robert@example2.dod.mil'

 type='unsubscribed'/>

4. The contact‟s server then SHALL send a roster push with the updated roster item to all of

the contact‟s interested resources, where the subscription state is now either “none” or “to”.

For added clarification, see Appendix A of rfc3921bis-15.

5. The contact‟s server then SHALL send a presence stanza of type “unavailable” from all of

the contact‟s online resources to the user.

CS: <presence from='john@example1.dod.mil/desktop client'

 id='i8bsg3h3'

 type='unavailable'/>

5.7.3.13.2.3 Rules for Server Processing of Inbound Subscription Cancellation

[Required] When the user‟s server receives the inbound subscription cancellation, it SHALL

first check if the contact is in the user‟s roster with subscription=„to‟ or subscription=„both‟ (see

Appendix A of rfc3921bis-15).

1. If this check is successful, the user‟s server SHALL [Section 3.2.3, rfc3921bis-15]:

a. Deliver the inbound subscription cancellation to all of the user‟s interested resources.

This SHALL occur before sending the roster push described in the next step.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1848

 US: <presence from='john@example1.dod.mil'

 id='ij5b1v7g'

 to='robert@example2.dod.mil'

 type='unsubscribed'/>

b. Initiate a roster push to all of the user‟s interested resources, containing an updated

roster item for the contact with the „subscription‟ attribute set to a value of “none” (if

the subscription state was “To” or “To + Pending In”) or “from” (if the subscription

state was “Both”).

2. If the check (above) is not successful, that is, if the user does not exist, if the contact is not

in the user‟s roster, or if the contact is in the user‟s roster with a subscription state other

than those described in the foregoing check, then the user‟s server SHALL silently ignore

the stanza by not delivering it to the user, not modifying the user‟s roster, and not

generating a roster push to the user‟s interested resources. [Section 3.2.3, rfc3921bis-15]

5.7.3.13.3 Unsubscribing

5.7.3.13.3.1 Rules for Client Unsubscribing

[Required] To unsubscribe from a contact‟s presence, the client SHALL send a presence stanza

of type “unsubscribe”. [Section 3.3.1, rfc3921bis-15]

UC: <presence id='ul4bs71n'

 to='john@example.dod.mil'

 type='unsubscribe'/>

5.7.3.13.3.2 Rules for Server Processing of Outbound Unsubscribe

[Required] Upon receiving the outbound unsubscribe, the user‟s server SHALL proceed as

follows [Section 3.3.2, rfc3921bis-15]:

1. If the contact is hosted on the same server as the user, then the server SHALL adhere to the

rules specified for Server Processing of Inbound Unsubscribe (see below).

2. If the contact is hosted on a remote server, the user‟s server SHALL then route the stanza

to that remote domain.

3. The user‟s server then SHALL send a roster push with the updated roster item to all the

user‟s interested resources, where the subscription state is now either “none” or “from” (see

Appendix A of rfc3921bis-15).

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1849

US: <iq id='h37h3u1bv402'

 to='robert@example2.dod.mil/desktop client'

 type='set'>

 <query xmlns='jabber:iq:roster'>

 <item jid='john@example1.dod.mil'

 subscription='none'/>

 </query>

 </iq>

5.7.3.13.3.3 Rules for Server Processing of Inbound Unsubscribe

[Required] When the contact‟s server receives the unsubscribe notification, it SHALL first

check if the user is in the contact‟s roster with subscription=„from‟ or subscription=„both‟ (i.e., a

subscription state of “From”, “From + Pending Out”, or “Both”; see Appendix A of rfc3921bis-

15).

1. If this check is successful, the contact‟s server SHALL [Section 3.3.3, rfc3921bis-15]:

a. Deliver the inbound unsubscribe to all of the contact‟s interested resources. This

SHALL occur before sending the roster push described in the next step.

b. Initiate a roster push to all of the contact‟s interested resources, containing an updated

roster item for the contact with the „subscription‟ attribute set to a value of “none” (if

the subscription state was “From” or “From + Pending Out”) or “to” (if the

subscription state was “Both”).

c. Generate an outbound presence stanza of type “unavailable” from each of the

contact‟s available resources to the user.

2. If the check (above) is not successful, that is, if the contact does not exist, if the user is not

in the contact‟s roster, or if the user is in the contact‟s roster with a subscription state other

than those described in the foregoing check, then the contact‟s server SHALL silently

ignore the stanza by not delivering it to the contact, not modifying the contact‟s roster, and

not generating a roster push to the contact‟s interested resources. [Section 3.3.3,

rfc3921bis-15]

5.7.3.14 Exchanging Presence Information

In XMPP, presence information is exchanged using <presence/> stanzas as defined in

rfc3921bis-15. A client controlled by a user sends presence information to its home server and

the home server in turn propagates that information to all of the user‟s contacts who have a

subscription to that user‟s presence. [Section 4.1, rfc3921bis-15]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1850

5.7.3.14.1 Initial Presence

5.7.3.14.1.1 Client Generation of Initial Presence

[Required] After completing the mandatory-to-negotiate stream features and retrieving a roster,

a client implementation SHALL signal its availability for communication by sending initial

presence to its server, i.e., a presence stanza with no „to‟ address and no „type‟ attribute.

[Section 4.2.1, rfc3921bis-15]

UC: <presence/>

NOTE: The initial presence stanza may contain the <priority/> element, the <show/> element,

and one or more instances of the <status/> element. [Section 4.2, rfc3921bis-15]

5.7.3.14.1.2 Server Processing of Outbound Initial Presence

1. [Required] Upon receiving initial presence from a client, the user‟s server SHALL send

the initial presence stanza from the full JID <user@domain/resource> of the user to all

contacts that are subscribed to the user‟s presence. [Section 4.2.2, rfc3921bis-15]

US: <presence from='user@domain/resourecepart'

 to='contact@domain'/>

2. [Required] The user‟s server SHALL also broadcast initial presence from the user‟s

newly available resource to all of the user‟s available resources (including the resource that

generated the presence notification in the first place). [Section 4.2.2, rfc3921bis-15]

3. [Required] In the absence of presence information about the user‟s contacts, the user‟s

server SHALL also send presence probes to the user‟s contacts on behalf of the user (see

Section 5.7.3.14.2, Presence Probes). [Section 4.2.2, rfc3921bis-15]

5.7.3.14.1.3 Server Processing of Inbound Initial Presence

[Required] Upon receiving presence from the user, the contact‟s server SHALL deliver the

user‟s presence stanza to all of the contact‟s available resources. [Section 4.2.3, rfc3921bis-15]

5.7.3.14.1.4 Client Processing of Inbound Initial Presence

[Required] When the contact‟s client receives presence from the user, it SHALL proceed as

follows [Section 4.2.4, rfc3921bis-15]:

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1851

1. If the user is in the contact‟s roster, the client SHALL display the presence information in

an appropriate roster interface.

2. If the user is not in the contact‟s roster, the client SHALL ignore the presence information

and not display it to the contact.

5.7.3.14.2 Presence Probes

A presence probe is a request for a contact‟s current presence information, sent on behalf of a

user by the user‟s server; syntactically it is a presence stanza whose „type‟ attribute has a value

of “probe”. In the context of presence subscriptions, the value of the „from‟ address SHALL be

the bare JID of the subscribed user and the value of the „to‟ address SHALL be the bare JID of

the contact to which the user is subscribed, since presence subscriptions are based on the bare

JID. [Section 4.3, rfc3921bis-15]

5.7.3.14.2.1 Server Generation of Outbound Presence Probe

1. [Required] To discover the availability of a user‟s contact, the user‟s server SHALL be

capable of sending a presence probe from the bare JID <user@domain> of the user to the

bare JID <contact@domain> of the contact. [Section 4.3.1, rfc3921bis-15]

US: <presence from='john@example1.dod.mil'

 id='ign291v5'

 to='robert@example2.dod.mil'

 type='probe'/>

2. [Required] The server SHALL NOT send a probe to a contact if the user is not subscribed

to the contact's presence (i.e., if the contact is not in the user‟s roster with the „subscription‟

attribute set to a value of “to” or “both”). [Section 4.3.1, rfc3921bis-15]

 NOTE: The user‟s server SHOULD send a presence probe whenever the user starts a new

presence session by sending initial presence. However, the server MAY choose not to send

the probe at that point if it has what it deems to be reliable and up-to-date presence

information about the user‟s contacts (e.g., because the user has another available resource

or because the user briefly logged off and on before the new presence session began). In

addition, a server MAY periodically send a presence probe to a contact if it has not

received presence information or other traffic from the contact in some configurable

amount of time; this can help to prevent “ghost” contacts who appear to be online but in

fact are not. [Section 4.3.1, rfc3921bis-15]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1852

 NOTE: Naturally, the user‟s server does not need to send a presence probe to a contact if

the contact‟s account resides on the same server as the user, since the server possesses the

contact‟s information locally. [Section 4.3.1, rfc3921bis-15]

5.7.3.14.2.2 Server Processing of Inbound Presence Probe

[Required] Upon receiving a presence probe to the contact‟s bare JID from the user‟s server on

behalf of the user, the contact‟s server SHALL reply as follows [Section 4.3.2, rfc3921bis-15]:

1. If the contact account does not exist or the user is in the contact‟s roster with a subscription

state other than “From”, “From + Pending Out”, or “Both” (as defined under Appendix A

of rfc3921bis-15), then the contact‟s server SHALL return a presence stanza of type

“unsubscribed” in response to the presence probe. Here the „from‟ address SHALL be the

bare JID of the contact, since specifying a full JID would constitute a presence leak as

described in rfc3920bis-17.

CS: <presence from='mike@example2.dod.mil'

 id='xv291f38'

 to='john@example1.dod.mil'

 type='unsubscribed'/>

2. Else, if the contact has moved temporarily or permanently to another address, then the

server SHALL return a presence stanza of type “error” with a stanza error condition of

<redirect/> (temporary) or <gone/> (permanent) that includes the new address of the

contact.

3. Else, if the contact has no available resources, then the server SHALL reply to the presence

probe by sending to the user a presence stanza of type “unavailable”.

4. Else, if the contact has at least one available resource, then the server SHALL reply to the

presence probe by sending to the user the full XML of the last presence stanza with no „to‟

attribute received by the server from each of the contact‟s available resources. Here the

„from‟ addresses are the full JIDs of each available resource.

CS: <presence from='robert@example2.dod.mil/foo'

 id='hzf1v27k'

 to='john@example1.dod.mil'/>

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1853

5.7.3.14.3 Subsequent Presence Broadcasts

[Required] After sending initial presence, a client implementation SHALL be capable of

updating its availability by sending a presence stanza with no „to‟ address and no „type‟ attribute.

[Section 4.4.1, rfc3921bis-15]

UC: <presence>

 <show>away</show>

 </presence>

NOTE: This presence update MAY contain the <priority/> element, the <show/> element, and

one or more instances of the <status/> element.

5.7.3.14.3.1 Server Processing of Outbound Presence

1. [Required] Upon receiving a presence stanza expressing updated availability, the user‟s

server SHALL broadcast the full XML of that presence stanza to the contacts who meet all

of the following criteria [Section 4.4.2, rfc3921bis-15]:

a. The contact is in the user‟s roster with a subscription type of “from” or “both”.

b. The last presence stanza received from the contact during the user‟s presence session

was NOT of type “unsubscribe”.

NOTE: As an optimization, if the subscription type is “both”, then the server SHOULD send

subsequent presence notifications to a contact only if the contact is online according to the user‟s

server. [Section 4.4.2, rfc3921bis-15]

2. [Required] The user‟s server SHALL also send the presence stanza to all of the user‟s

available resources (including the resource that generated the presence notification in the

first place). [Section 4.4.2, rfc3921bis-15]

5.7.3.14.3.2 Server Processing of Inbound Presence

[Required] Upon receiving presence from the user, the contact‟s server SHALL deliver the

user‟s presence stanza to all of the contact‟s available resources. [Section 4.4.3, rfc3921bis-15]

5.7.3.14.3.3 Client Processing of Inbound Presence

[Required] From the perspective of the contact‟s client, there is no significant difference

between initial presence broadcast and subsequent presence broadcast, so the contact‟s client

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1854

SHALL follow the rules for processing of inbound presence defined under Section 5.7.3.14.1.4,

Client Processing of Inbound Initial Presence. [Section 4.4.4, rfc3921bis-15]

5.7.3.14.4 Unavailable Presence

5.7.3.14.4.1 Client Generation of Unavailable Presence

[Required] Before ending its presence session with a server, the user‟s client SHALL gracefully

become unavailable by sending unavailable presence, i.e., a presence stanza that possesses no

„to‟ attribute and that possesses a „type‟ attribute whose value is “unavailable”. The unavailable

presence stanza SHALL NOT contain the <priority/> element or the <show/> element, since

these elements apply only to available resources. [Section 4.5.1, rfc3921bis-15]

UC: <presence type='unavailable'/>

NOTE: Optionally, the unavailable presence stanza MAY contain one or more <status/>

elements specifying the reason why the user is no longer available.

5.7.3.14.4.2 Server Processing of Outbound Unavailable Presence

1. [Required] The user‟s server SHALL NOT depend on receiving unavailable presence

from an available resource, since the resource can become unavailable ungracefully (e.g.,

the resource can be timed out by the server because of inactivity). [Section 4.5.2,

rfc3921bis-15]

2. [Required] If an available resource becomes unavailable for any reason (either gracefully

or ungracefully), the user‟s server SHALL broadcast unavailable presence to all contacts

that meet all of the following criteria [Section 4.5.2, rfc3921bis-15]:

a. The contact is in the user‟s roster with a subscription type of “from” or “both”.

b. The last presence stanza received from the contact during the user‟s presence session

was not of type “error” or “unsubscribe”.

3. [Required] If the unavailable notification was gracefully received from the client, then the

server SHALL broadcast the full XML of the presence stanza. [Section 4.5.2,

rfc3921bis-15]

4. [Required] The user‟s server SHALL also send the unavailable notification to all of the

user‟s available resources (including the resource that generated the presence notification

in the first place). [Section 4.5.2, rfc3921bis-15]

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1855

5. [Required] If the server detects that the user has gone offline ungracefully, then the server

SHALL generate the unavailable presence broadcast on the user‟s behalf. [Section 4.5.2,

rfc3921bis-15]

5.7.3.14.4.3 Server Processing of Inbound Unavailable Presence

[Required] Upon receiving an unavailable notification from the user, the contact‟s server

SHALL deliver the user‟s presence stanza to all of the contact‟s available resources. [Section

4.5.3, rfc3921bis-15]

5.7.3.14.4.4 Client Processing of Inbound Unavailable Presence

[Required] From the perspective of the contact‟s client, there is no significant difference

between initial presence broadcast and unavailable presence broadcast, so the contact‟s client

SHALL follow the rules for processing of inbound presence defined under Section 5.7.3.14.1.4,

Client Processing of Inbound Initial Presence. [Section 4.5.4, rfc3921bis-15]

5.7.3.14.5 Presence Syntax

5.7.3.14.5.1 Show Element

[Required] To specify a particular availability sub-state, a client implementation SHALL

support the <show/> element within a presence stanza. A presence stanza SHALL NOT contain

more than one <show/> element. The XML character data of the <show/> element is not human-

readable. The XML character data SHALL be one of the following [Section 4.7.2.1,

rfc3921bis-15]:

 away – The entity or resource is temporarily away.

 chat – The entity or resource is actively interested in chatting.

 dnd – The entity or resource is busy (dnd = “Do Not Disturb”).

 xa – The entity or resource is away for an extended period (xa = “eXtended Away”).

NOTE: If no <show/> element is provided, the entity is assumed to be online and available.

[Section 4.7.2.1, rfc3921bis-15]

NOTE: While support for this feature is required, the use of this feature is optional.

5.7.3.14.5.2 Status Element

To convey human-readable XML character data specifying a natural-language description of an

entity‟s availability, the client SHALL support the <status/> element within a presence stanza. It

is normally used in conjunction with the show element to provide a detailed description of an

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1856

availability state (e.g., “In a meeting”) when the presence stanza has no „type‟ attribute. There

are no attributes defined for the <status/> element, with the exception of the „xml:lang‟ attribute.

[Section 4.7.2.2, rfc3921bis-15]

 <presence from='john.smith@chat1.dod.mil/office'

 xml:lang='en'>

 <show>dnd</show>

 <status>In a meeting</status>

 </presence>

NOTE: A presence stanza of type “unavailable” MAY also include a <status/> element to

provide detailed information about why the entity is going offline.

NOTE: While support for this feature is required, the use of this feature is optional.

5.7.3.14.5.3 Priority Element

NOTE: The OPTIONAL <priority/> element contains non-human-readable XML character data

that specifies the priority level of the resource. The value SHALL be an integer between -128

and +127. [Section 4.7.2.3, rfc3921bis-15]

 <presence xml:lang='en'>

 <show>dnd</show>

 <status>In Meeting</status>

 <priority>1</priority>

 </presence>

If no priority is provided, the processing server or client SHOULD consider the priority to be

zero (“0”).

5.7.3.15 Exchanging Messages

After a client has established and secured a stream with its home server, the next step, as

discussed above, is to bind a specific resource to the stream. Once the client has completed the

resource binding step, the client may generate and exchange an unlimited number of stanzas.

One such stanza that can be exchanged is <message/>. As discussed in rfc3921bis-15, a

<message/> stanza is used to “push” information to another entity.

5.7.3.15.1 One-to-One Chat Sessions

One-to-One Chat permits a user to engage in a near real-time, text-based conversation with

another user. In XMPP, this text-based conversation is enabled through the exchange of

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1857

<message/> stanzas. As discussed in Section 5 of rfc3921bis-15, the two parties will typically

exchange a number of messages in relatively rapid succession within a relatively brief period.

[Section 5.1, rfc3921bis-15]

1. [Required] When a user‟s client is engaged in a chat session with a contact, the user's

client SHALL send a message of type “chat” and the contact‟s client SHALL preserve that

message type in subsequent replies. [Section 5.1, rfc3921bis-15]

2. [Required] The user‟s client SHALL be capable of including a <thread/> element with its

initial message, which the contact's client SHALL also preserve during the life of the chat

session. The primary use of the XMPP <thread/> element is to uniquely identify a

conversation thread or “chat session” between two entities instantiated by <message/>

stanzas of type „chat‟. [Section 5.1, rfc3921bis-15]

3. [Required] The user‟s client SHALL address the initial message in a chat session to the

bare JID of the contact (i.e., <contact@domain>). Until and unless the user‟s client

receives a reply from the contact, it SHALL continue sending any further messages to the

contact‟s bare JID. Once the user‟s client receives a reply from the contact‟s full JID, it

SHALL address its subsequent messages to the contact‟s full JID as provided in the „from‟

address of the contact‟s replies. [Section 5.1, rfc3921bis-15]

4. [Required] The contact‟s client SHALL address its subsequent replies to the user‟s full

JID <user@domain/resource> as provided in the „from‟ address of the initial message.

[Section 5.1, rfc3921bis-15]

5.7.3.15.2 Message Stanza Syntax

5.7.3.15.2.1 To Attribute

[Required] An instant messaging client SHALL specify the intended recipient for a message

stanza by providing the JID of the intended recipient in the „to‟ attribute of the <message/>

stanza. [Section 5.2.1, rfc3921bis-15]

5.7.3.15.2.2 Type Attribute

1. [Required] An instant messaging client SHALL support all of the following message

types [Section 5.2.2, rfc3921bis-15]:

a. chat – The value “chat” indicates that the message is sent in the context of a one-to-

one chat session. Typically a receiving client will present/display messages of type

“chat” in an interface that enables one-to-one chat between the two parties, including

an appropriate conversation history.

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1858

b. error – The value “error” indicates that the message is generated by an entity that

experienced an error in processing a message received from another entity.

 NOTE: A client that receives a message of type “error” SHOULD present an

appropriate interface informing the sender of the nature of the error.

c. groupchat – The value “groupchat” indicates that the message is sent in the context of

a multiuser chat environment. Typically, a receiving client will present a message of

type “groupchat” in an interface that enables many-to-many chat between the parties.

d. normal – The value “normal” indicates that the message is a standalone message that

is sent outside the context of a one-to-one conversation or groupchat, and to which it

is expected that the recipient will reply. Typically, a receiving client will present a

message of type “normal” in an interface that enables the recipient to reply, but

without a conversation history. The default value of the „type‟ attribute is "normal".

 NOTE: Support for the following message type is defined as recommended.

e. headline – The value “headline” indicates that the message provides an alert, a

notification, or other information to which no reply is expected (e.g., news headlines,

sports updates, near-real-time market data, and syndicated content). Because no reply

to the message is expected, typically a receiving client will present a message of type

“headline” in an interface that appropriately differentiates the message from

standalone messages, chat messages, or groupchat messages (e.g., by not providing

the recipient with the ability to reply).

2. [Required] If an application receives a message with no „type‟ attribute or the application

does not understand the value of the „type‟ attribute provided, it SHALL consider the

message to be of type “normal” (i.e., “normal” is the default). [Section 5.2.2,

rfc3921bis-15]

5.7.3.15.2.3 Body Element

[Required] A client SHALL be capable of populating a <message/> stanza with the <body/>

element. The <body/> element contains human-readable XML character data that specifies the

textual content of the message.

NOTE: While support for this feature is required, the use of this feature is optional. This child

element is normally included in a message stanza. [Section 5.2.3, rfc3921bis-15]

NOTE: There are no attributes defined for the <body/> element, with the exception of the

„xml:lang‟ attribute. Multiple instances of the <body/> element MAY be included in a message

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1859

stanza, but only if each instance possesses an „xml:lang‟ attribute with a distinct language value.

[Section 5.2.3, rfc3921bis-15]

5.7.3.16 Conformance Requirements in rfc3920bis and rfc3921bis

Section 15 of rfc3920bis-17 and Section 13 of rfc3921bis-15, describe a protocol feature set that

summarizes the conformance requirements associated with these two specifications. In the event

of a discrepancy between Section 15 of rfc3921bis or Section 13 of rfc3921bis and this section of

the UCR, the explicit requirements defined in this section of the UCR take precedence.

5.7.3.17 XMPP Extensions

The documents referenced in this section represent extensions to the XMPP baseline

specifications (i.e., rfc3920bis-17 and rfc3921bis-15). Through an open standards process, the

XMPP Standards Foundation (XSF) develops extensions to XMPP. These extensions are

published by the XSF as XMPP Extension Protocols (XEPs) series documents at

http://xmpp.org/. While the majority of XMPP extensions are defined in the XEP series

documents, other important related specifications/extensions are defined by the XMPP Working

Group at the IETF. These XMPP extensions address functionality or enable innovative features

that are not addressed in the core XMPP specifications.

The protocol specifications referenced within Table 5.7.3.-2 constitute a mandatory protocol

suite (i.e., for the purpose of compliance testing and certification; support for these extensions is

defined as REQUIRED). Regarding the specifications defined in Table 5.7.3-2, client and server

implementations SHALL comply with all requirements defined as “MUST”, “SHALL”,

“REQUIRED”, “MUST NOT”, “SHALL NOT”. It is also expected that vendors will likewise

implement requirements defined as “SHOULD” or “SHOULD NOT” except where there may

exist valid reasons in particular circumstances to ignore a particular requirement.

NOTE: Some of the protocol specifications referenced in Table 5.7.3-2 have their own

dependencies.

Table 5.7.3-2. DoD XMPP Protocol Suite

REFERENCE XMPP SERVER XMPP CLIENT

XEP-0045: Multi-User Chat ✓ ✓

XEP-0030: Service Discovery ✓ ✓

XEP-0085: Chat State Notifications N/A ✓

RFC 4422 – Appendix A SASL EXTERNAL Mechanism* ✓

XEP-0191: Simple Communications Blocking

 ✓ ✓

XEP-0004: Data Forms

 ✓ ✓

http://xmpp.org/
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0085.html
http://xmpp.org/extensions/xep-0191.html
http://xmpp.org/extensions/xep-0191.html

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1860

REFERENCE XMPP SERVER XMPP CLIENT

XEP-0077: In-Band Registration**

 ✓ ✓

XEP-0138: Stream Compression ✓ ✓

XEP-0082: XMPP Date and Time Profiles ✓ ✓

XEP-0068: Field Standardization for Data Forms ✓ ✓

* See XEP-0178: Best Practices for Use of SASL EXTERNAL with Certificates

** The use of In-Band Registration is restricted to the use case where a user is attempting to register with a

moderated room in the context of a Multi-User Chat service.

5.7.3.17.1 Elevated/Clarified Requirements

To better enable multivendor interoperability, to facilitate full feature functionality, and to

address specific security requirements, some of the requirements defined as “SHOULD”,

“RECOMMENDED”, “SHOULD NOT”, “NOT RECOMMENDED”, “MAY”, or

“OPTIONAL” in the above XMPP extensions have been redefined in this specification to reflect

requirement levels associated with the following terminology: “MUST”, “SHALL”,

“REQUIRED”, “MUST NOT”, or “SHALL NOT”. These elevated requirements are explicitly

defined in Table 5.7.3-3. Also, where there may be some degree of ambiguity in a commercial

standard regarding whether or not support for a particular capability or feature is REQUIRED,

Table 5.7.3-3 adds explicit clarification.

Table 5.7.3-3. Elevated/Clarified Requirements

REFERENCE

DOCUMENT

REFERENCE

DOCUMENT

SECTION

REQUIREMENT*

XEP-0045 Multi-User Chat 5.1
Implementations SHALL provide support for the

„Visitor‟ role.

XEP-0045 Multi-User Chat 5.2
Implementations SHALL provide support for the

„Admin‟, „Member‟, and „Outcast‟ affiliation.

XEP-0045 Multi-User Chat
6.1, 6.2, and

6.3

Implementations SHALL support the following

capabilities (as defined in Sections 6.1, 6.2, and 6.3):

1. Discovering Component Support for MUC

2. Discovering Rooms

3. Querying for Room Information

XEP-0045 Multi-User Chat

3, 4.2, 7.1.5,

7.1.6, 7.1.7,

and 7.1.8

Implementations SHALL support the following room

types:

1. Both Persistent or Temporary

2. Public

3. Non-Anonymous

4. Password-Protected and Unsecured

5. Both Members-Only and Open

6. Moderated and Un-moderated

http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1861

REFERENCE

DOCUMENT

REFERENCE

DOCUMENT

SECTION

REQUIREMENT*

XEP-0045 Multi-User Chat 7.1.15

Implementations SHALL support the sending of

Discussion History to a new occupant (as defined in

Sections 7.1.15). NOTE: “Whether such history is

sent, and how many messages comprise the history,

shall be determined by the chat service implementation

or specific deployment.”

XEP-0045 Multi-User Chat

7.1, 7.2, 7.4,

7.5, 7.6, 7.8,

7.9, 7.10, and

7.13

Implementations SHALL support a user‟s ability to:

1. Enter a Room

2. Exit a Room

3. Change Availability Status

4. Invite Another User to a Room

5. Convert a One-to-One Chat into a Multi-User

Conference

6. Send a Private Message

7. Send a Message to All Occupants

8. Register with a Room

9. Request Voice

XEP-0045 Multi-User Chat 8.1 through 8.6

Implementations SHALL support the ability of a

Moderator to perform the following privileges:

1. Modify the subject

2. Kick a participant or visitor from the room

3. Grant or revoke voice in a moderated room

4. Modify the list of occupants who have voice in a

moderated room

XEP-0045 Multi-User Chat 9.1 through 9.9

Implementations SHALL support the ability of an

Admin to perform the following privileges:

1. Ban a user from the room

2. Modify the list of users who are banned from the

room

3. Grant or revoke membership

4. Modify the member list

5. Grant or revoke moderator privileges

6. Modify the list of moderators

7. Approve Registration Requests

XEP-0045 Multi-User Chat 10.1 and 10.2

Implementations SHALL support the ability of an

Owner to create a room and to change defining room

configuration settings (as defined in Section 10.1 and

10.2)

http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html

DoD UCR 2008, Change 2

Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1862

REFERENCE

DOCUMENT

REFERENCE

DOCUMENT

SECTION

REQUIREMENT*

XEP-0045 Multi-User Chat
10.3 through

10.9

Implementations SHALL support the ability of an

Owner to perform the following privileges (as defined

in Section 10):

1. Grant or revoke ownership privileges

2. Modify the owner list

3. Grant or revoke administrative privileges

4. Modify the Admin list

5. Destroy a room

XEP-0030 Service

Discovery
4 and 3

Implementation SHALL provide support for:

1. Discovering information about an entity as defined

in Section 3 [XEP-030]

2. Discovering the items associated with an entity as

defined in Section 4 [XEP-030]

XEP-0191 Simple

Communications Blocking

5.2 and 5.4

Implementation SHALL permit a user to:

1. Determine which contacts are blocked as defined in

Section 5.2 [XEP-0191]

2. Unblock communications with a specific contact as

defined in Section 5.4 [XEP-0191]

NOTE: Table 5.7.3-3 ONLY addresses functionality where the associated requirement level has

been elevated (e.g., from a “SHOULD” to a “SHALL”) or where there was a need to explicitly

clarify whether support for a particular capability or feature is REQUIRED.

5.7.3.18 XML Usage

[Required] XMPP client and server implementations SHALL comply with the mandatory

requirements defined in Section 11 of rfc3920bis-17.

5.7.3.19 DiffServ Code Point (DSCP) Requirements

[Required] XMPP client and server implementations shall class mark XMPP traffic consistent

with the code point values defined for ROUTINE Low-Latency Data as per UCR Table 5.3.3-1

(DSCP Assignments).

http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0191.html
http://xmpp.org/extensions/xep-0191.html

	5.7 Near-Real-Time, Text-Based Messaging Products
	5.7.1 Introduction
	5.7.2 Overview
	5.7.3 XMPP Requirements
	5.7.3.1 Introduction
	5.7.3.2 Scope and Acknowledgement
	5.7.3.3 Architecture
	5.7.3.4 Terminology
	5.7.3.5 Functional Summary
	5.7.3.5.1 Client-to-Server Connections
	5.7.3.5.2 Server-to-Server Connections

	5.7.3.6 XMPP Addressing
	5.7.3.7 XML Streams
	5.7.3.7.1 TCP Binding
	5.7.3.7.1.1 Hostname Resolution
	5.7.3.7.1.2 Standard, Default Port Values
	5.7.3.7.1.3 Fallback Process
	5.7.3.7.1.4 Reconnection

	5.7.3.7.2 Stream Negotiation Overview
	5.7.3.7.3 Stream Features
	5.7.3.7.4 Stream Restarts
	5.7.3.7.5 Continuation and Completion of Stream Negotiation
	5.7.3.7.6 Directionality
	5.7.3.7.7 Closing a Stream
	5.7.3.7.7.1 Closing a Stream without a Stream Error

	5.7.3.7.8 Stream Attributes
	5.7.3.7.8.1 Initial Streams
	5.7.3.7.8.2 Response Streams

	5.7.3.7.9 Namespaces
	5.7.3.7.9.1 Streams Namespace
	5.7.3.7.9.2 Content Namespace

	5.7.3.7.10 Stream Errors
	5.7.3.7.10.1 Stream Error Syntax and Defined Stream Error Conditions

	5.7.3.8 TLS and STARTTLS Negotiation
	5.7.3.8.1 STARTTLS Process
	5.7.3.8.2 Initiation of STARTTLS Negotiation
	5.7.3.8.3 STARTTLS Negotiation Fails
	5.7.3.8.4 TLS Negotiation
	5.7.3.8.5 TLS Success
	5.7.3.8.6 TLS Failure
	5.7.3.8.7 Order of TLS and SASL Negotiation
	5.7.3.8.8 STARTTLS Failure Case

	5.7.3.9 Authentication and SASL Negotiation
	5.7.3.9.1 Client-to-Server Streams
	5.7.3.9.2 Server-to-Server Streams
	5.7.3.9.3 SASL Failure
	5.7.3.9.4 SASL Errors

	5.7.3.10 Resource Binding
	5.7.3.10.1 Overview
	5.7.3.10.2 Resource Binding Process
	5.7.3.10.2.1 Mandatory-to-Negotiate
	5.7.3.10.2.2 Advertising Support
	5.7.3.10.2.1 Server-Generated Resource Identifier

	5.7.3.10.3 Error Cases Associated with Server-Generated Resource Identifiers

	5.7.3.11 XML Stanzas
	5.7.3.11.1 Common Attributes
	5.7.3.11.1.1 ‘to’ Attribute
	5.7.3.11.1.2 ‘from’ Attribute
	5.7.3.11.1.3 ‘id’ Attribute
	5.7.3.11.1.4 ‘type’ Attribute
	5.7.3.11.1.5 ‘xml:lang’ Attribute

	5.7.3.11.2 Basic Semantics
	5.7.3.11.2.1 Message Semantics
	5.7.3.11.2.2 Presence Semantics
	5.7.3.11.2.3 IQ Semantics

	5.7.3.11.3 Stanza Errors
	5.7.3.11.4 Server Rules for Processing XML Stanzas
	5.7.3.11.4.1 Rules for Processing XML Stanzas to Remote Domains
	5.7.3.11.4.1.1 Server-to-Server Stream Already Exists
	5.7.3.11.4.1.2 No Server-to-Server Stream Currently Exists
	5.7.3.11.4.1.3 Error Handling

	5.7.3.11.4. 2 Rules for Processing XML Stanzas to Local Domain
	5.7.3.11.4.2.1 No Such User
	5.7.3.11.4.2.2 Bare JID
	5.7.3.11.4.2.3 Full JID

	5.7.3.12 Roster Management
	5.7.3.12.1 Roster-Related Elements and Attributes
	5.7.3.12.2 Roster-Related Methods
	5.7.3.12.3 Retrieving the Roster on Login
	5.7.3.12.4 Adding a Roster Item
	5.7.3.12.5 Updating a Roster Item
	5.7.3.12.6 Deleting a Roster Item

	5.7.3.13 Presence Subscription Management
	5.7.3.13.1 Subscription Requests
	5.7.3.13.1.1 Rules for Client Generation of Outbound Subscription Requests
	5.7.3.13.1.2 Rules for Server Processing of Outbound Subscription Requests
	5.7.3.13.1.3 Rules for Server Processing of Inbound Subscription Requests
	5.7.3.13.1.4 Rules for Client Processing of Inbound Subscription Requests
	5.7.3.13.1.5 Rules for Server Processing of Outbound Subscription Approval
	5.7.3.13.1.6 Rules for Server Processing of Inbound Subscription Approval

	5.7.3.13.2 Cancelling a Subscription
	5.7.3.13.2.1 Rules for Client Generation of Subscription Cancellation
	5.7.3.13.2.2 Rules for Server Processing of Outbound Subscription Cancellation
	5.7.3.13.2.3 Rules for Server Processing of Inbound Subscription Cancellation

	5.7.3.13.3 Unsubscribing
	5.7.3.13.3.1 Rules for Client Unsubscribing
	5.7.3.13.3.2 Rules for Server Processing of Outbound Unsubscribe
	5.7.3.13.3.3 Rules for Server Processing of Inbound Unsubscribe

	5.7.3.14 Exchanging Presence Information
	5.7.3.14.1 Initial Presence
	5.7.3.14.1.1 Client Generation of Initial Presence
	5.7.3.14.1.2 Server Processing of Outbound Initial Presence
	5.7.3.14.1.3 Server Processing of Inbound Initial Presence
	5.7.3.14.1.4 Client Processing of Inbound Initial Presence

	5.7.3.14.2 Presence Probes
	5.7.3.14.2.1 Server Generation of Outbound Presence Probe
	5.7.3.14.2.2 Server Processing of Inbound Presence Probe

	5.7.3.14.3 Subsequent Presence Broadcasts
	5.7.3.14.3.1 Server Processing of Outbound Presence
	5.7.3.14.3.2 Server Processing of Inbound Presence
	5.7.3.14.3.3 Client Processing of Inbound Presence

	5.7.3.14.4 Unavailable Presence
	5.7.3.14.4.1 Client Generation of Unavailable Presence
	5.7.3.14.4.2 Server Processing of Outbound Unavailable Presence
	5.7.3.14.4.3 Server Processing of Inbound Unavailable Presence
	5.7.3.14.4.4 Client Processing of Inbound Unavailable Presence

	5.7.3.14.5 Presence Syntax
	5.7.3.14.5.1 Show Element
	5.7.3.14.5.2 Status Element
	5.7.3.14.5.3 Priority Element

	5.7.3.15 Exchanging Messages
	5.7.3.15.1 One-to-One Chat Sessions
	5.7.3.15.2 Message Stanza Syntax
	5.7.3.15.2.1 To Attribute
	5.7.3.15.2.2 Type Attribute
	5.7.3.15.2.3 Body Element

	5.7.3.16 Conformance Requirements in rfc3920bis and rfc3921bis
	5.7.3.17 XMPP Extensions
	5.7.3.17.1 Elevated/Clarified Requirements

	5.7.3.18 XML Usage
	5.7.3.19 DiffServ Code Point (DSCP) Requirements

